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1 Foreword to the Second Edition

More than ten years passed I lied hands on the mmu.library and the tools around it. It seemed that
the 68K based microprocessor architecture on which the Amiga was build was dead, and no further
development will see the light of the day. Surprisingly, new interest grew from “retro users” that
like to play with old systems for the sake of the hardware and the applications itself. A couple of
minor problems have been reported, and been fixed, and new featured had also been requested. As
of today, the mmu.library and the CPU libraries based on it are the only CPU and MMU low-level
libraries actively maintained, and have found their way on many systems — despite many critical
voices raised in the early days of this project.

This manual introduces a new release of the mmu.library which not only includes bug fixes, but
also an interesting new feature that allows to switch branches of MMU trees rapidly, for example
to map in hardware components rapidly in a pre-allocated memory window. Surprisingly, despite
written in assembly language, the mmu.library seemed to be pretty robust and surprisingly bug-free,
a tradition that will hopefully continue with this release.

2 Introduction to the MuLib

All “modern” Amiga computers come with a special hardware component called the “MMU”. This
abbreviation stands for Memory Management Unit. The MMU is a very powerful piece of hardware
that can be seen as a translator between the CPU that carries out the actual calculation, and the
surrounding hardware: memory and IO devices. Each access of the CPU to fetch or write data from
the hardware or memory is filtered by the MMU, checked whether the memory region is available,
write protected, can be hold in the CPU internal cache and more. The MMU can be told to translate
the addresses as seen from the CPU, the so-called logical address to the electrical signals seen by
the actual hardware, the physical address. It can hence be used to “re-map” memory or hardware
components, i.e. mirror parts of the memory without actually touching the memory itself.

A series of programs has been and is available that make use of the MMU: First of all, it’s needed
by the operating system to tell the CPU not to hold “chip memory”, as used by the Amiga custom
chips, in its cache; second, several tools re-map the Kickstart ROM to faster 32Bit RAM speeding
up the operating system. Third, a number of debugging tools make use of it to detect accesses to
physically unavailable memory regions, and hence to find bugs in programs; amongst them is the
“Enforcer” by Michael Sinz. Fourth, the MMU can be used to create the illusion of “almost infinite
memory”, with so-called “virtual memory systems”. Last but not least, a number of miscellaneous
applications have been found for the MMU as well, for example for display drivers of Macintosh
emulators.

Unfortunately, the Amiga Os does not provide any interface to the MMU, everything boils down
to hardware hacking and every program hacks the MMU tables as it wishes. Needless to say this
prevents program A from working nicely together with program B, Enforcer with FastROM or
VMM, and other combinations have been impossible up to now.

The purpose of the mmu.library and the tools around it is to change this, namely to provide
a single consistent interface that makes accesses to the MMU transparent and independent of the
actual hardware. In one word, compatibility.

2.1 Supported Hardware

The MuLib is able to program all MMUs of the Motorola MC68K processor family: The 68851,
which is the external MMU of the 68020 in the form of a co-processor, and the build-in MMUs of the
68030, the 68040 and the 68060. Motorola also offered an external MMU for the 68010 quite a while
ago, the 68451, but this chip has never been used in any Amiga model or third-party expansion. It
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is unsupported by the library, mainly because it is conceptually very different from the other four
MMU types which, in fact, have been used in the Amiga here and there.

2.2 Basic Concepts

The basic object the MMU library handles is the MMUContext, or short Context. It keeps the
complete configuration of the MMU. If you’re familiar with other Amiga hardware components,
one might say that the MMUContext is what the ViewPort is for the graphics engine. Unlike the
ViewPort, however, the Context does not have a documented structure, there are only functions to
operate on Contexts. Since the Tasks handled by Exec really share all their memory, one should
better think of tasks as the threads of other operating systems. Threads, as in Unix for example, all
in the same environment and share all the data and all the addresses amongst them. A Context,
however, defines a unique address space, and different Contexts run “independent” of each other.
There are means to protect data from one context to be seen from another, or to make at least writing
impossible. Shared memory concepts are possible, too. Each Exec Task “belongs to” or “runs as
a part of” a Context, and as Exec schedules Tasks, it also schedules Contexts. If a Task belonging
to a different Context gains the CPU, a “Context swap” is initiated by the MuLib. Therefore, a
“Context” should be seen as the AmigaOs equivalent of a Unix process.

As soon as the MuLib is loaded, two Contexts will be build. For first, the so called “public
Context”. This Context describes the global address space all Amiga applications are part of, unless
they decide to detach themselves from the public Context. You usually need not to enter the
public Context explicitly; as soon as a new Task is created, it will belong to this Context anyhow;
you furthermore need not to create this Context, it will be build by the library during start-up.
The second Context is the “public supervisor Context”. This is the Context “supervisor code”,
mostly system maintenance code, runs in. Note that this is different from the old “Exec world”
where user code and supervisor code shared a common environment. The MuLib enforces a distinct
user/supervisor model. Especially, this means that you may have data available in supervisor mode
which is not available in user mode. As for the “public Context”, you need not to create the “public
supervisor Context” as it will be build by the library anyways on start-up. To conclude:

✷ Each Exec Task belongs to a MMUContext. Without further calls to the MuLib, it belongs
to the public Context.

✷ The MuLib distinguishes between user and supervisor mode accesses.

✷ Contexts are schedules as the Tasks belonging to them are scheduled.

✷ User mode code runs in the MMUContext of the currently active task. Supervisor code runs
in the supervisor Context of the currently active user Context. The supervisor Context of the
public Context is the public supervisor Context.

✷ Contexts come in pairs. Each user mode Context comes with a corresponding supervisor mode
Context. Several user mode Contexts may share one supervisor mode Context, but not the
other way round.

✷ On start-up, the MuLib will build two Contexts, the public Context and the public supervisor
Context.

From the user’s point of view, the Context is “just a handle” to the administration data keeping
all the information required to swap the MMU setup. It does not have a documented structure,
even though it is referred as a struct MMUContext * for all the library functions.
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3 MuLib Contexts and Exec Tasks

3.1 Looking for Contexts

The MuLib provides several calls to get handles to Contexts. The following library vectors are
provided:

struct MMUContext *ctx;

struct Task *task;

ctx = CurrentContext(task);

This call returns the user mode Context the given Task belongs to. You may pass in NULL to get
the Context the current Task is part of. So to say, CurrentContext(NULL) is pretty much the
MuLib equivalent of FindTask(NULL). The following

struct MMUContext *public;

public = DefaultContext();

however, returns the public user Context. It need not to be identical to the result code of Current-
Context(NULL) because the current task might have been “detached” from the public context
and might run in its own environment. Unlike CurrentContext(), DefaultContext() does not
take any arguments.

struct MMUContext *ctx,*sctx;

sctx = SuperContext(ctx);

The SuperContext() call returns the corresponding supervisor mode Context for the user mode
Context passed in. Hence,

SuperContext(CurrentContext(NULL));

returns the current supervisor Context, and

SuperContext(DefaultContext());

returns the public supervisor Context. None of these calls can fail, the result code is always valid.

3.2 Attaching Tasks to Contexts

Even though each Exec Task is already part of a Context — the public Context, namely — you
may want to detach a task from the public Context and may run it as part of a different Context.
Especially, since Exec always creates Tasks in the public Context, this is the only way to run a Task
in its private environment: Namely, create a new Context, create a new Task, and attach the new
Task to the Context. The following call will do this for you:

struct MMUContext *new,*old;

struct Task *task;

old = EnterMMUContext(new,task);

The function EnterMMUContext returns the handle to the Context the task belonged to before
EnterMMUContext() has been called. EnterMMUContext() does not only attach tasks to
private Contexts, it is also able to remove a task from one private Context and to attach it to a
different private Context. If the new argument of EnterMMUContext() is set to NULL, the
task will leave its current Context and will be attached to the public Context.
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NULL Means Failure. EnterMMUContext() returns NULL in case it failed. It does
not return NULL in case the task was attached to the public Context before; in this
case, it returns the handle to the public Context. Always remember to check for result
codes.

The MuLib provides a short-hand for removing a task from a private Context and to re-attach it to
the public Context:

struct MMUContext *old;

struct Task *task;

old = LeaveMMUContext(task);

The call LeaveMMUContext() is fully equivalent to

EnterMMUContext(NULL,..);

It might seem senseless to call EnterMMUContext() with the context argument set to the
public Context because the NULL argument seems to do right the same with less trouble. However,
this is not equivalent. For some of the advanced features of the MuLib, you have to enter a Context
explicitly, regardless of whether you want to detach from the public context or not. EnterMMU-
Context() allocates some internal data structures for the task passed in which are required for
these features, and LeaveMMUContext() will release these structures again. The task will use
the same MMU setup in both cases, but the MuLib will keep some additional information with the
task if the argument is non-NULL. Nevertheless, no matter why you entered a Context, you have
to call LeaveContext() before your Task shuts down.

3.3 Advanced Information about Contexts and Tasks

To be able to schedule the Contexts, the MuLib makes use of the tc_Launch() and tc_Switch()
function pointers in the Exec Task structure as soon as you enter a Context — i.e. call Enter-
MMUContext() with a non-NULL argument. This means that these two Exec hooks will be no
longer available for you if you have to make use of the advanced features of the MuLib. They remain
available as long as you never enter a Context, though, and hence the MuLib remains backwards
compatible to applications that have to play with the two Exec hooks. The MuLib provides more
flexible replacement hooks under the name of “Switch and Launch Exception Hooks” introduced in
section 8.3.

3.4 Function Reference

This chart provides a brief reference to the functions mentioned in this chapter:

Table 1: Context and Task Control Functions

MuLib function Description

CurrentContext() Get a handle to the Context of a given Task
DefaultContext() Get a handle to the public Context
SuperContext() Get the handle to a supervisor Context
EnterMMUContext() Attach a task to a Context
LeaveMMUContext() Run a task as part of the public Context
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4 Working on Contexts

The MuLib provides a series of functions to modify existing Contexts, hence to modify the MMU
setup in a easy, straightforward and hardware independent way. All the functions fall in two cat-
egories: low level and high level calls. The high level calls are very convenient to use, allow rather
abstract modifications on the MMU setup, and provide an easy to use interface. However, the high-
level functions are slow and not interrupt-callable; they must be called from within a task, and they
might break a Forbid() state. High-level calls might fail, due to out-of-memory conditions, but
the high-level functions provide means to “lock” the MMU setup and hence to avoid interactions
in critical situations; error handling functions are available as well. Furthermore, calling high-level
functions does not directly cause a modification of the MMU setup. Instead, all modifications are
recorded, but not written out to the hardware yet. By one call, the changes are translated to the
lower level.

The low level functions, however, write more or less directly to the hardware, causing an instant
change of the MMU setup. Low-level functions are less powerful, and they sometimes require
additional preparation of the higher level. Furthermore, the low-level functions are cumbersome to
use and not as handy as the high-level routines, and even slower if large modifications have to be
made. However, the low level functions are faster for smaller modifications, and fully interrupt-
callable.

If the high-level routines translate their settings to the lower level, and hence are about to
overwrite modifications installed at the low level, a special hook is called by the library. Programs
operating on the lower level can hence intercept modifications due to high-level operations and
adjust the MMU settings as desired. This hook is introduced in section 8.2, see there for details.

4.1 Concepts

A “MMU Page” is the smallest block of memory individually handled by the MMU. Typically, pages
are 1K or 4K large, but the size depends on the Context and on what the hardware is able to offer.
The 68851 and the 68030 provide page sizes of 256 bytes up to 32K, in powers of two, whereas the
68040 and the 68060 can only handle 4K and 8K pages. Pages start and end always at multiples of
their sizes, i.e. 4K pages start at 4K boundaries. Hence, one should think of the full address space
of 232 bits divided into pages of equal size, adjacent to each other whose boundaries are aligned to
multiples this page size. The MuLib function

struct MMUContext *ctx;

ULONG pagesize;

pagesize = GetPageSize(ctx);

will return the page size for the Context passed in.

Seek the Size. Never assume a fixed page size, and never hard-code the page size. The
page size will be different on different Amiga models, and it even may vary from machine
to machine, dependent on the requirements of the MuLib and on the configuration made
by the user.

The MMU is told what to do with each page by a so-called “descriptor”. It is the MuLib which
creates and modifies these descriptors. However, the way how these descriptors look like depend
on the type of the MMU installed, therefore the MuLib provides an abstraction of the data in the
descriptor, the “Property Flags”. By modifying these flags, you tell the MuLib how it should setup
the MMU descriptors, and hence finally what the MMU will do; the job of the MMU is, for example,
to tell the CPU which addresses are allowed to be kept in a cache for faster access. Another job of the
MMU is to “translate” addresses: The addresses a program uses to access its data are called “logical
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addresses” because this is what the program logic sees. The MMU translates the logical addresses
on a page by page basis to physical addresses — “physical” for the simple reason because these
are the hardware signals that leave the MMU and run as electrical signals to the RAM and ROM
chip and other hardware. Hence, what appears outside of the MMU is different from the addresses
seen by the program inside. Since two applications might run under two different Contexts, the
very same logical address could be translated to two different physical addresses simply because the
MMU setup is different. This is quite common on Unix machines where the program space for each
application starts at address zero; hence Unix depends heavily on the use of a MMU. A very simple
application for this feature of the MMU is to “re-map” the Kickstart ROM into faster RAM: What
happens here is that the logical addresses of the ROM get translated to the copy of the ROM in
RAM, at a different physical location.

Highly Logical. All the addresses used by the MuLib and its function calls are, unless
noted otherwise, logical addresses. Physical addresses appear only at times where the
distinction has to be made, and only for re-mapping a page of logical addresses to a
different physical address.

4.2 High-level MMU Setup

The following high-level call modifies some of the property flags of one or more pages:

struct MMUContext *ctx;

ULONG flags,mask,lower,size;

BOOL result;

result = SetProperties(ctx,flags,mask,lower,size,TAG_DONE);

This is a tag-based call, some of the property flags require some additional tags passed in, check
the list below for further details. As for all tag-based calls, the tag list must be terminated by
TAG_DONE. There is also a non-stack based call for assembly language, named SetProper-
tiesA(). Please check the AutoDocs for details.

The parameters for this call are as follows: ctx is a handle to the Context, lower and size
specify the logical address range to be setup. Both arguments must be multiples of the page size
or the call will fail since the MuLib checks this requirement explicitly. The mask argument defines
which property flags are to be changed. Each bit set to one transfers the corresponding bit from
the flags parameter to the MuLib high level abstraction of a MMU descriptor. Finally, flags is the
bit mask of the flags to be set or cleared. The following bits are defined in mmu/context.h:

MAPP_WRITEPROTECTED This defines the specified region to be write-protected. Espe-
cially, if a program attempts to write into the memory area, an access exception will be gener-
ated and the MuLib will call the segmentation fault exception hooks. This is the “aggressive”
write protection as it may generate exceptions. The “defensive” version of this Property Flag
is MAPP_ROM.

MAPP_USED Mark the memory as “used”. This is the abstraction of the MMU descriptor “U”
bit which is set by the MMU each time an access to the corresponding page in memory is made.
The MuLib will build the MMU descriptors with the “U” bit set if the MAPP_USED bit on
the high-level is set. Note that reading this bit from the abstraction level by GetProperties()
does not return the actual hardware MMU flag but only the pre-defined value of the “U” bit.
There’s usually little reason to modify this bit by the high-level functions, just leave it alone.
The only advantage of setting the “U” bit in first place is that this avoids an additional memory
access of the MMU if the memory is accessed for the first time, though the difference is likely
not noticeable. If you want to check whether a page has been used or not, you must use the
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low-level function GetPageProperties() instead. Similarly, SetPageProperties() must be
used to set or clear this bit.

MAPP_MODIFIED Mark the memory as “modified”. This is the abstraction of the MMU “M”
bit which is set on each write access to the corresponding page. Again, this bit only defines
whether the MuLib high-level functions should build the descriptors with the “M” bit pre-set,
it will not reflect the actual state of the true hardware descriptor. For further details, check
the description of MAPP_USED above.

MAPP_CACHEINHIBIT Instruct the MMU to tell the CPU not to keep the corresponding
memory page in cache. This is important if the page contains memory-mapped I/O registers
or memory which is accessed by other hardware in parallel to the CPU, e.g. chip memory or
video RAM. Unlike ordinary memory, these addresses may alter the state without interaction
of the CPU, and a copy of the hardware register in cache might therefore not reflect the true
state. By default, caching is enabled, but memory writes both go the cache and the physical
memory, i.e. the default cache mode is “write through”.

MAPP_SUPERVISORONLY Each access to the specified pages from user code will generate
an access fault and will run the segmentation violation exception hooks. This is currently
implemented by checking whether the Context is a user or a supervisor context, and marking
the pages as invalid for user Contexts. Even though the 68040 and the 68060 MMUs offer a
separate “supervisor only” bit, it is currently not used by the library for consistency to the
68030 and 68851.

MAPP_USERPAGE0 Set the user page attribute 0. The user page attribute of a page appears
as hardware signal at an output line of the CPU and can therefore be used for special hardware
purposes. However, there is currently no Amiga hardware which uses this feature, hence just
leave this bit alone. This bit is ignored by the 68030 and the 68851 anyways.

MAPP_USERPAGE1 Set user page attribute 1. As for the MAPP_USERPAGE0 bit, this
is a special hardware feature only available for the 68040 and 68060, and which is currently
not made use of. Just leave this bit alone.

MAPP_GLOBAL This bit corresponds to the “G” bit of the MMU descriptor and indicates that
the memory region is shared between different contexts. This allows low-level MMU usage to
make context swaps more efficiently by only removing those descriptors in the MMU cache
whose “global” bit is not set. It is only available on 68040 and 68060 systems and ignored on
the 68030 and 68851.

MAPP_BLANK The specified address range is not mapped by the hardware at all, it does not
contain memory nor I/O registers. If this bit is set, read and write accesses to this area are
quietly tolerated and ignored, mainly to work around faulty software and to avoid exceptions.
This works currently by re-mapping the specified range to a blank “dummy” page which
is elsewhere in memory. Since MAPP_BLANK cannot generate exceptions, this is the
“defensive form” of MAPP_INVALID access control.

MAPP_SINGLEPAGE Tells the MuLib that it must build one hardware descriptor for each
page in the specified region. Especially, this will turn off certain optimizations the MuLib
would have taken to preserve memory, as for example sharing of descriptors. This bit is a
must if you want to identify modified or used pages individually, i.e. by the “U” and “M” bits,
and this bit also must be set if you want to operate on the MMU descriptors by means of the
low-level functions, i.e. GetPageProperties() and SetPageProperties.
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Be Prepared for Low-Level. Accessing MMU descriptors by means of the low-level
functions requires a preparation step, namely, setting the MAPP_SINGLEPAGE
bit in the high level. This will not only inform the MuLib that it should allow
access to the descriptors, it will also ensure that each page gets its own descrip-
tor, hence makes the low-level functions meaningful in first place. Needless to say,
MAPP_SINGLEPAGE pages require more memory in general. Do not outsmart
yourself! Experts might wonder whether this step is really required for the 68040
and 68060 MMU which do not implement “early termination descriptors”. Please
feel ensured that it really is.

MAPP_COPYBACK If the specified pages are cache-able, i.e. MAPP_CACHEINHIBIT
is not set, turn on the copy-back cache. This means that writes of the program will not be
written back to memory immediately, but will be buffered until the cache entry is required
otherwise, resulting in a noticeable speedup. This bit will be ignored by the 68030 and the
68851 which do not implement a copy-back cache.

MAPP_INVALID Mark the specified memory range as invalid. Accessing it by either a read or
a write will cause a segmentation violation exception. If the MAPP_REPAIRABLE bit is
not set, you may ask the MuLib to keep an additional ULONG with the page which will be
passed to the exception hooks to identify the origin of the exception. This long word is specified
by the MAPTAG_USERDATA tag, defined in mmu/mmutags.h file. This property flag is
the “aggressive form” of MAPP_BLANK as it may generate exceptions.

Zero is a Special Number. You are free to mark the first — or so to say, “zeroth” —
page in memory as invalid. The MuLib provides a special kludge to allow accesses to
the global system constant AbsExecBase even with the zero page invalidated, and
it will also emulate accesses to valid chip memory in this range. Needless to say
that the emulation is always slower than the real thing. This kludge can be disabled
for special purposes, and the low memory limit is adjustable. Study section 9 for
details. For the experts: You guessed right, this is how “MuForce” works.

MAPP_REMAPPED Tell the MuLib that the physical address is different from the logical ad-
dress and that the accesses to this page should be redirected to “elsewhere”. The lower argu-
ment to SetProperties specifies the logical address to be re-mapped, the physical destination
has to be specified by the MAPTAG_DESTINATION tag item, see mmu/mmutags.h.

MAPP_SWAPPED The specified memory region is currently “swapped out” on an external
medium like a HD. In case a read or write access to this page is seen, the MuLib will generate
a page fault exception and call the “swapper” exception hooks to load the page back into
memory again. If the MAPP_REPAIRABLE bit is not set, you may specify an additional
ULONG which is passed to the exception handlers and which could be used to locate the
block on the external medium. This long word is set by the MAPTAG_BLOCKID tag
item, see mmu/mmutags.h.

MAPP_ROM This is the “defensive” form of the MAPP_WRITEPROTECTED bit. The
specified memory region is “simulated” read-only memory, write accesses are silently toler-
ated but will not alter the memory. Ideal for Kickstart re-mapping to provide a silent write
protection for the ROM image.

MAPP_SHARED Shares the corresponding definition with its parent context, given by MCX-
TAG_SHARE on context creation, see 9.1. This bit is only available for the mmu.library
releases 43 and above, and is ignored for older releases. Unlike MAPP_GLOBAL which
corresponds to a hardware bit for the 68040 and 68060, this is a software driven bit only
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which is used for administration purposes. Additionally, you may give the mmu.library a mask
which properties are to be shared within the parent context. This mask is setup by the MAP-
TAG_SHAREMASK tag item and defaults to 0xffffffff, i.e. all properties will be shared
with the parent. In case you do not share a specific property, the additional properties must
be binary-or’ed with MAPP_SHARED here. Properties that require an additional data
item like MAPP_REMAPPED or MAPP_SWAPPED cannot be selectively enabled
and used together with MAPP_SHARED. They must be either shared from the parent
completely, i.e. the corresponding bit must be set in the MAPTAG_SHAREMASK, or
must be setup completely separate without MAPP_SHARED. The MAPP_SHARED
property is not available unless the context has been created with MCXTAG_SHARE.

MAPP_TRANSLATED The specified memory region is — probably partially — under control
of the transparent translation registers. Reprogramming the MMU for this memory area
is therefore ignored by the MMU hardware. Even though this sounds complicated, there’s
currently no need to care about this bit at all because the MuLib tries to get rid of the
transparent translation registers very early at start-up by simulating them by a proper MMU
setup instead, and clearing them afterwards. Hence, you will never find this bit set anyhow,
and you should never set this bit manually yourself. Just leave it alone for now.

MAPP_REPAIRABLE By setting this bit you tell the MuLib that you want to be able to repair
an access to an invalid or write-protected page. The MuLib will then try to obtain the data
that was written to the invalid page and will forward this data to the exception handler, or
it will allow the exception handler to provide the data that should be read by the CPU when
accessing the invalid page. Hence, by setting this bit, you can emulate hardware registers in
the specified range by means of a clever exception handler that absorbs or provides the data of
the simulated hardware. If this bit is not set, the MuLib will not always be able to provide the
written-out data or to push back data into the CPU pipeline. Instead, the exception handler
must either abort the access, or must swap in a page to allow the CPU to retry the access.
Since the software support for MAPP_REPAIRABLE requires a lot of work that is not
required for virtual memory support, it is recommended to leave MAPP_REPAIRABLE
off for such applications.

Repair Service is Expensive. Even though the MAPP_REPAIRABLE bit is a
very powerful feature, it has its price. First of all, access to the CPU pipeline
has to be emulated for most CPUs, which means that this is slow. Furthermore,
the MuLib does not offer any additional page data for MAPP_REPAIRABLE
pages, hence MAPP_BLOCKID or MAPP_USERDATA are not available.
The “MuForce” debugging tool uses this feature to present the data that was written
out on an access fault, and to push back “dummy” data into the faulty program.

MAPP_IMPRECISE Only meaningful if MAPP_CACHEINHIBIT is set, too, this tells
the 68060 MMU to be a bit “sloppy” on true physical bus errors. Therefore, this bit should be
set only for memory or I/O areas that cannot generate bus errors, but which cannot tolerate
caching. This bit is safely ignored by all other MMUs. Typically, this bit is set for video RAM,
like the native “chip memory” of the Amiga motherboard or the RAM on graphics cards. This
memory is always valid to access, but it cannot be cached because additional circuits like the
blitter operate on the memory, bypassing the CPU.

MAPP_INDIRECT The corresponding page in memory is handled by a descriptor you con-
structed and your code has full control over. The MuLib will just generate a reference to your
hardware descriptor, but will otherwise not care about it. Hardware descriptors should be
build by BuildIndirect() and defined by the SetIndirect() call in a hardware-independent
way, and should be read by GetIndirect() only. A hardware descriptor is always four bytes
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long, and must be placed at a long word boundary or even at a cache line boundary — which
is 16 bytes — in case you want to read it back with GetIndirect() later. Its physical address
is specified by the MAPTAG_DESCRIPTOR tag item, defined in mmu/mmutags.h. On
access faults, the MuLib will never report your descriptor as the descriptor that caused the
exception, but instead its own “indirect descriptor” that points to your descriptor.

Too Indirect for Beginners. Hardware descriptors are truly powerful because they
are extremely fast. On the other hand, they are very cumbersome to handle, and
definitely an advanced feature. Don’t try to mess with them unless you know what
you’re doing. Study section 5 for details. In particular, using indirect descriptors
may make DMA transfers to or from memory regions mapped by these descriptors
unreliable.

MAPP_BUNDLED The specified memory range is bundled to one single page in memory, re-
peated over and over again, filling up the full range. Hence, in a MAPP_BUNDLED
memory region, the same physical memory page is visible within the entire range mapped as
such.

MAPP_USER0 This bit is strictly for your purposes. The MuLib will completely ignore this
bit, and will keep it for you. It does not correspond to any hardware function of any MMU
at all — don’t mix this with the “user page attribute 0”. These user attributes, along with all
other high-level attributes, are also visible for the low-level functions GetPageProperties()
and related.

MAPP_USER1 Reserved for public use, similar to MAPP_USER0.

MAPP_USER2 Again kept free for you.

MAPP_USER3 And another one for you.

MAPP_NONSERIALIZED Ignored unless MAPP_CACHEINHIBIT is set, too, and only
used by the 68040 MMU, safely ignored by all others. This bit tells the 68040 that it may
re-order accesses to the specified memory range in order to speed up the bus throughput.
Hence, accesses on the physical bus may appear in a different order than the accesses made by
software. This bit should not be set for true hardware mapped I/O, but a typical application
would be video RAM like the native “chip memory” or the RAM on graphics boards. It can’t
be cached because custom hardware like the blitter accesses it by means of DMA, but the
order of accesses does not matter.

MAPP_IO The corresponding memory range are memory mapped I/O registers. This bit has
no influence on the MMU setup at all, but it is read by tools like “MuForce” or the “disas-
sembler.library” to avoid accesses to this “memory” for hex dumps or disassembling. Custom,
non-auto-configuring hardware should have this bit set to inform such tools that accesses to
addresses such regions will cause side effects.

MAPP_WINDOW The corresponding address region defines a window within the current con-
text through which another context is visible. This allows fast MMU sub-tree switching
without having to go through a high-level MMU table rebuild. MMU Context windows are
described in section 6. This flag requires the tag MAPTAG_WINDOWCTXPTRPTR
in addition which identifies the window to be mapped in. This feature requires at least V46
of the MuLib.

The counterpart of SetProperties() is the GetProperties() function: It returns the property
flags for a given logical address:
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struct MMUContext *ctx;

ULONG flags,address;

flags = GetProperties(ctx,address,TAG_DONE);

Unlike SetProperties(), the address need not to be aligned to a multiple of the page size. However,
the returned properties will only depend on the page the address belongs to. Additionally, the
following tags can be passed in, defined in mmu/mmutags.h:

MAPTAG_DESTINATION Requires a pointer to void * as argument. This pointer is filled in
with the corresponding physical address of the logical address passed in, regardless of whether
remapping, i.e. MAPP_REMAPPED, is enabled or not.

MAPTAG_BLOCKID Requires a pointer to a ULONG as argument. This ULONG is filled
in if the page is swapped out, returning an identifier which was selected by SetProperties().
Only available for MAPP_SWAPPED pages.

MAPTAG_USERDATA Requires a pointer to a ULONG as argument which will be filled with
the “cookie” of MAPP_INVALID pages, if they have been set by SetProperties() in first
place.

MAPTAG_DESCRIPTOR Takes a pointer to a ULONG * as argument which is filled for
MAPP_INDIRECT pages with the pointer to the true physical hardware descriptor used
to handle this page.

MAPTAG_SHAREMASK Takes a pointer to a ULONG * which is filled by a binary mask
which identifies the property bits this context shares with the parent context and which are
copied from the parent context into this. This requires at least V43 of the MuLib.

MAPTAG_WINDOWCTXPTRPTR Takes a pointer to a MMUContextWindow * and
returns there the MMU Context window handle for those pages that are mapped through a
window. See section 6. Requires V46 of the library.

The returned flags value reflects the MMU properties in the high-level of the MMU setup;
especially, the MAPP_USED and MAPP_MODIFIED bits do not correspond to the state of
the MMU hardware “U” and “M” bits, but just for the pre-selected value of these bits in case the
MuLib has to rebuild parts of the hardware level.

4.3 Context Locking

Since more than one Task could try to operate on the same Context at once, you have to “lock” the
context before you proceed and modify its setup by SetProperties(). This is done by

struct MMUContext *ctx;

LockMMUContext(ctx);

After having modified the high-level of the Context by calling SetProperties(), the changes must
be loaded to the hardware. This step is similar to the MakeVPort() call of the graphics.library:
It translates the abstraction layer to the true hardware data. One single call is enough to proceed:

struct MMUContext *ctx;

BOOL result;

result = RebuildTree(ctx);
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Multiple MMU Contexts can be rebuild jointly such that either the entire operation succeeds, i.e.
all Contexts are updated, or the low (i.e. hardware) level of the MMU contexts remain untouched:

struct MMUContext *ctx1,*ctx2;

BOOL result;

result = RebuildTrees(ctx1,ctx2,NULL);

RebuildTrees() takes as many pointers to Contexts as arguments as you like — not only two as
above. The last argument has to be NULL to terminate the list.

Like SetProperties(), the above calls may fail due to out of memory conditions. In this case,
the hardware layer of the MMU setup remains unchanged, but all the modifications in the software
layer remain active. Hence, if RebuildTree() is called again later, and if more memory is available,
your changes will become active. Once you’re done, you have to unlock the Context again to allow
other tasks to modify it:

struct MMUContext *ctx;

UnlockMMUContext(ctx);

Since SetProperties() and even RebuildTree() may fail, a problem arises in case the system is
low on memory. In such a case, any attempt to modify or complete the MMU setup might fail,
or cannot even be restored to the original since a second SetProperties() call could fail as well.
Luckily, the MuLib provides functions to help you in this situation. The idea is to first make a
backup of the current MMU setup, using

struct MMUContext *ctx;

struct MinList *ctxl;

ctxl=GetMapping(ctx);

then to run all modifications, finally to call RebuildTree(). If something goes wrong, one single
call is enough to restore the original MMU setup by

struct MMUContext *ctx;

struct MinList *ctxl;

SetPropertyList(ctx,ctxl);

Unlike SetProperties(), the SetPropertyList() call cannot fail. It uses the backup made before
to restore the MMU setup and re-installs the backup made. After restoration, the backup will
become part of the Context and cannot be used for a second restoration.

Does not Undo Low Level Modifications. SetPropertyList() cannot be used, though,
to restore a MMU setup which has been translated into a true hardware table already.
A RebuildTree() after a SetPropertyList() does not perform any operation, as the
MuLib does not recognize any changes on the high-level description. They are reverted
along with the high-level description itself.

Finally, a property list is released by

struct Context *ctx;

struct MinList *ctxl;

ReleaseMapping(ctx,ctxl);
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You can use a backup only once for one single SetPropertyList() call. Nevertheless — regard-
less of whether SetPropertyList() was called or not, you have to tell the MuLib that you do not
require it anymore. This is done by ReleaseMapping(). That is, ReleaseMapping() has to be
called, regardless of whether the backup was used or not.

To conclude, a proper and safe MMU modification, including proper error handling, would look
like this:

struct MMUContext *ctx;

struct MinList *ctxl;

BOOL fine = TRUE;

/* Lock the context */

LockMMUContext(ctx);

/* make a backup */

ctxl=GetMapping(ctx);

/* got a backup? */

if (ctxl) {

/* Now run all the modifications */

fine = SetProperties(ctx,...);

if (fine) {

/* etc, etc... */

fine = SetProperties(ctx,...);

}

/* and finally, build the hardware table */

if (fine) {

fine = RebuildTree(ctx);

}

/* Uhoh, something went wrong! */

if (!fine) {

/* Restore the previous setup */

SetPropertyList(ctx,ctxl);

}

} else fine = FALSE;

UnlockMMUContext(ctx);

ReleaseMapping(ctx,ctxl);

4.4 Sharing of MMU Tables

The property MAPP_SHARED signals the MuLib that the property of this specific memory
range comes from another, namely the parent context. To be able to use this property, your con-
text must have been created with the tag MCXTAG_SHARE, cf. section 9. The properties
are then borrowed from the parent, and updated whenever the parent gets updated, i.e. whenever
RebuildTree() is called on the parent context. However, this property sharing works only auto-
matically for the high-level interface, low-level calls discussed in section 5 are not covered by table
sharing. An equivalent low-level mechanism is that of “Context Windows” explained in section 6.
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Especially, the low-level call SetPageProperty() of a parent page does not modify any child
contexts, and the low-level SetPageProperty() simply ignores the MAPP_SHARED attribute
at all. Similar, GetPageProperties() will not return the MAPP_SHARED attribute to in-
dicate page sharing. This is because even though the MuLib shares the properties between the
contexts, it does not share the raw hardware descriptors between the different contexts. It only
propagates high-level flags from the parent to the child whenever necessary.

Another caveat about the MAPP_SHARED property is that you must disable it explic-
itly on your child context to dispatch from the parent, i.e. to enforce your own page settings
for your context. Hence, the mask parameter of the SetProperties() call should always include
MAPP_SHARED or the resulting page settings might be very different from what you expect
— the MuLib will ignore your selection at all and will continue to use the parent’s properties. After
all, this is what MAPP_SHARED is all about.

The MAPTAG_SHAREMASK can be used to selectively alter only some flags of the
parent context, but to carry over others. To give an example, a MAPTAG_SHAREMASK
of ~MAPP_COPYBACK selectively disables the forwarding of the copyback-caching flag from
the parent to the child. A property flag of MAPP_SHARED | MAPP_COPYBACK will
enable, and a property flag of MAPP_SHARED alone will disable copyback-caching, indepen-
dently of the parent settings. The default of the share mask is ~0, i.e. all properties of the parent
will be carried over.

4.5 Modifying More Than One Context at Once

Please recall that the MuLib keeps user and supervisor accesses separate, and that each user Context
comes with a corresponding supervisor Context. This means specifically that you sometimes want
to modify two or more Contexts at once, typically the user Context and its supervisor Context. If
handled the naive way, several race conditions could result: For example, consider that your program
locks the user Context first, and then locks the supervisor Context. Assume further that another
program attempts to modify the two Contexts simultaneously, but locking the supervisor Context
first and the user Context later. This could yield to the classical “deadlock” situation where your
program keeps the user Context locked but can’t run on because the supervisor Context is obtained
by the second Task, and the second Task can’t continue because it tries to obtain the user Context
which is already locked by your task.

Therefore, if you want to lock more than one Context at once, you absolutely must lock the
complete Context list before you lock individual Contexts. For that, use:

LockContextList();

Nevertheless, you need to lock the individual Contexts afterwards. The Context list lock is released
by

UnlockContextList();

when you’re done. Both calls do not take any arguments.
A race condition is due to the RebuildTree() call: If you want to compute the low-level MMU

setup for two Contexts, it might happen that the first RebuildTree() succeeds, but the second call
fails due to lack of memory; an attempt to restore the first tree could fail as well, making it impossible
to restore the former setup. To help you in this situation, the MuLib provides a function that
rebuilds several MMU setups at once such that either all of them are rebuild successfully, or none of
them has been touched. This call comes in two forms, one parameter based form RebuildTreesA()
which takes a NULL-terminated array of Context pointers, and a stack based call RebuildTrees()
whose last argument is set to NULL, similar to a tag list. The last form is conveniently used from
high-level languages like C.
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struct MMUContext *ctx,*sctx;

BOOL fine;

fine = RebuildTrees(ctx,sctx,NULL);

would, for example, rebuild two MMU setups at once. The following example code shows how to
modify safely the property flags for the public Context and its supervisor Context at once:

/*

* SetCacheMode: Modify the cache mode of the address range

* "from" to "from+size-1" in both the

* default context and the default supervisor

* context.

* "flags" defines the new properties,

* "mask" which bits are to be altered.

*

* Returns a dos-type error code.

*

* Taken from the "MuSetCacheMode" sources, (c) Thomas Richter.

*

*/

#include <exec/types.h>

#include <exec/lists.h>

#include <dos/dos.h>

#include <mmu/context.h>

#include <utility/tagitem.h>

#include <proto/exec.h>

#include <proto/dos.h>

#include <proto/mmu.h>

int SetCacheMode(ULONG from,ULONG size,ULONG flags,ULONG mask)

{

struct MMUContext *ctx,*sctx; /* default context, supervisorcontext */

struct MinList *ctxl,*sctxl; /* backups */

ULONG psize; /* the page size */

int err;

ctx=DefaultContext(); /* get the default context */

sctx=SuperContext(ctx); /* get the supervisor context for this one */

psize=GetPageSize(ctx); /* get the page size */

/* Now check for proper alignment of the data passed in */

if (size & (psize-1)) {

Printf("The given size 0x%lx is not divisible "

"by the page size 0x%lx.\n",size,psize);

return ERROR_BAD_NUMBER;

}

if (from & (psize-1)) {

Printf("The given address 0x%lx is not divisible "
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"by the page size 0x%lx.\n",from,psize);

return ERROR_BAD_NUMBER;

}

/*

** Page sizes of the user and the supervisor context are always

** identical.

*/

/* Lock first the context list, then the two contexts */

LockContextList();

LockMMUContext(ctx);

LockMMUContext(sctx);

err=ERROR_NO_FREE_STORE;

/* Make backups of the MMU setup */

if (ctxl=GetMapping(ctx)) {

if (sctxl=GetMapping(sctx)) {

err=0;

/* Set the flags in the user context */

if (!SetProperties(ctx,flags,mask,from,size,TAG_DONE)) {

err=ERROR_NO_FREE_STORE;

}

/* and just the same in the supervisor context */

if (!SetProperties(sctx,flags,mask,from,size,TAG_DONE)) {

err=ERROR_NO_FREE_STORE;

}

if (err==0) {

/*

** If everything is fine so far, rebuild the trees

** to write this setup directly into the hardware

*/

if (!RebuildTrees(ctx,sctx,NULL)) {

err=ERROR_NO_FREE_STORE;

}

}

/*

** Uhoh, something went wrong!

** We better restore what we found before!

*/

if (err) {

SetPropertyList(ctx,ctxl);
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SetPropertyList(sctx,sctxl);

}

/*

** Now release the backups. Even if we used them,

** this step *IS* required.

*/

ReleaseMapping(sctx,sctxl);

}

ReleaseMapping(ctx,ctxl);

}

/* Unlock the contexts and the list */

UnlockMMUContext(sctx);

UnlockMMUContext(ctx);

UnlockContextList();

/* and say goodbye! */

return err;

}

4.6 Function Reference

Here’s again a quick function reference for all the calls introduced in the last section:

Table 2: High Level MMU Tree Control Functions

MuLib function Description

GetPageSize() Return the size of a MMU page in bytes
SetProperties() Define property flags for one or more pages
GetProperties() Return the property flags for one address
LockMMUContext() Lock a context from modification
UnlockMMUContext() Release a context lock
AttemptLockMMUContext() Attempt to lock a context
LockContextList() Lock the list of contexts
UnlockContextList() Release the list lock
AttemptLockContextList() Attempt to lock the context list
RebuildTree() Build the low-level from the high-level data
RebuildTrees() Rebuild more than one tree at once
GetMapping() Make a backup of the MMU setup
ReleaseMapping() Release a MMU setup
SetPropertyList() Replace the high-level setup by a backup
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5 Low-level MMU Setup

High-level MuLib functions have the disadvantage that they cannot be called from interrupt or
supervisor code. Low level functions can, but because they are interrupt-callable, they provide no
locking mechanism. If some other Task decides to overwrite the low-level MMU table — let it be
by calling the high-level function RebuildTree() or by modifying the low-level directly — then
your changes are lost. However, there is at least a way to handle the first situation by means of
the so-called “page access exception” which will be described below. Another restriction is that
the low-level functions require a special preparation step, namely the MAPP_SINGLEPAGE
property flag must be set by means of the high-level functions, and the MMU tree must be rebuild
afterwards. Furthermore, the low level functions operate only at one page a time.

5.1 Defining Properties on the Low Level

The function

struct MMUContext *ctx;

ULONG flags,mask,page;

BOOL result;

result = SetPageProperties(ctx,flags,mask,page,TAG_DONE);

is the low-level equivalent of the SetProperties() call. All parameters and flags are identical,
except that no address range can be specified. This is because only a single page at a time will be
modified. Its logical address must be passed in as the page parameter. As for SetProperties(), it
must be aligned to a multiple of the page size or the call will fail. Accordingly,

struct MMUContext *ctx;

ULONG address,flags;

flags = GetPageProperties(ctx,address,TAG_DONE);

will read the flags from the low-level MMU descriptor. As a special case, the MAPP_USED and
MAPP_MODIFIED properties reflect the state of the “U” and “M” bits of the true hardware
descriptor and tell you whether a page has been accessed, or has been written to since the last time
you cleared this bit.

Low, but not Ground Level. While SetPageProperties() function also includes a mod-
ification of the MMU hardware descriptor, GetPageProperties() takes the flags from
a slightly higher level and only reads the MAPP_USED and MAPP_MODIFIED
flags directly. This is because most of the property flags do not correspond to features
the MMU offers directly, but have to be emulated by software on some or all of the
members of the MC68K MMU series. This makes little difference as long as you keep in
mind that you must not hack on the MMU directly.

Both functions are interrupt-callable, and neither break a Forbid() nor a Disable() state. Hence,
it is safe to call these from critical code if you have to. Remember, however, that both calls require
the enabling of MAPP_SINGLEPAGE on the high level.

Low Level, no Sharing. The mmu.library does not provide sharing of low-level MMU
descriptors. For a similar feature, use Context Windows. If you modify a descriptor
of the parent (shared) context by SetPageProperties(), the corresponding changes
are not forwarded to the children (sharing contexts) automatically. Even though the
properties are shared from the parent, the MMU descriptors are not, such that each
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child gets a separate MMU tree and uses its own separate descriptors. If you read a
page descriptor of a child whose properties have been shared from the parent, you find
the MAPP_SHARED flag set; the remaining property flags are the combination of
the parent properties, filtered by the MAPTAG_SHAREMASK, binary or’ed with
the properties of the child.

5.2 Reading the Used and Modified Flags

The MMU keeps two special flags within its descriptors: The MAPP_USED flag that is set to
one whenever a program touches the page that is controlled by this descriptor, let it be by reading
or by writing; and the MAPP_MODIFIED flag, which gets set by every write access into the
page. Hence, MAPP_MODIFIED indicates that the page contents have been altered.

Both flags are available as low-level and as high-level flags, i.e. they may be used as input flags to
SetProperties() and SetPageProperties(). However, the consequences are a bit different: You
cannot clear either flag with high-level calls. That is, even though if the mask parameter of Set-
Properties() includes one of the two flags, the low level flag is at most set, but never cleared. Since
the aim of the two flags is to drive a virtual memory system and to determine which pages have been
touched and must be written out, the above rule prohibits inadequate modifications of important
state information that could cause data loss — clearing a MAPP_MODIFIED flag of a page
that was, indeed, modified would cause that a possible virtual memory system would not write back
the page to a swap device and hence, page modifications would be forgotten. Similar, GetProper-
ties() does not check the hardware MMU descriptors to find out about the MAPP_USED and
MAPP_MODIFIED states. If one of the two flags are returned as enabled, all you know is that
the next RebuildTree(s)() will set the corresponding bits in the hardware level descriptors, but if
the flags are cleared, no information about the hardware level has been obtained at all.

This is substantially different for the low-level calls. Both, SetPageProperties() and Get-
PageProperties() have full control over both flags, and can set or clear them. Hence, do not play
with the two bits uncarefully, it may damage a virtual memory system. To support virtual memory
systems, the the MuLib offers one specialized function that reads and clears both flags:

struct MMUContext *ctx;

ULONG lower,flags;

flags = GetPageUsedModified(ctx,lower);

This call returns the current MAPP_USED and MAPP_MODIFIED flags of the MMU page
that contains the address lower. It does not return any other flags. Furthermore, it clears both flags
in the MMU descriptor. Hence, the caller must store the result of this call in an internal database;
for example, it could increment used and modify-counters dependent on which flag is found active.

Altered, but not touched? Never ever attempt to set the MAPP_MODIFIED flag
without the MAPP_USED flag. This indicates an illegal page state — namely, a
state of a page that got modified without ever being touched. The MC68K MMUs may
react allergic against this combination and may lock up the system.

5.3 Reading and Writing Indirect Descriptors

The functions SetPageProperties() and GetPageProperties() are much faster than the high-
level RebuildTree(), though still go through one level of abstraction. As long as you have to
handle small chunks of memory that is never read from or written to disk, indirect descriptors will
work better, but offer less control and are much more cumbersome to handle.
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Powerful, but Dangerous. One of the important drawbacks of indirect descriptors to keep
in mind is that they do not support DMA operation. Especially, never ever read or
write memory which is mapped by indirect descriptors by means of Os I/O functions
like Read(), Write() or DoIO(). The MuLib will not be able to handle some cache
related race-conditions for them. If you want to access them, make a copy of the page
contents first and run the I/O operations on the copy.

An indirect descriptor works as follows: Typically, the MuLib designs all the hardware descriptors
for the MMU itself, but for indirect descriptors, it will just place a reference in the MMU table which
points to a descriptor you have to provide. By modifying your descriptor, you get direct control
over the MMU without much overhead. The descriptor is just a long word aligned long word or a
long word in a cache line aligned = 16 byte aligned array which is a multiple of cache lines long.
The latter, more restrictive alignment restriction holds in case you need to read back the descriptor
later using GetIndirect().

In principle, you could setup this descriptor yourself, but how this must be done depends of
course on the Amiga the code runs on. The MuLib helps you here by offering functions to pre-
calculate the required descriptors to abstract from the hardware. Second, you could also place the
descriptors in memory yourself, but due to some firmware features of several members of the 68K
series, you’d better do not try this yourself. The MuLib knows very well the race conditions that
show up here, and knows how to handle them. Last but not least, you should also avoid reading the
descriptors yourself, just for the same reason: A simple read access to a hardware MMU descriptor
has some side-effects the MuLib has to keep in mind.

The first step in building an indirect descriptor is to allocate four bytes of memory, with proper
alignment. The Os function AllocMem() is fine as long as you only want to write descriptors
because it already offers long word alignment. For the more restrictive alignment requirement of
GetIndirect(), you need to call the MuLib function

void *array;

ULONG size;

array = AllocAligned(size,MEMF_PUBLIC,16);

where size is divisible by 16 as well. More about this call is in the “Miscellaneous Functions”
chapter.

The second step is to obtain the physical address of the logical address you got from Al-
locMem(). In most cases, both will be identically, but they need not to be. The function

struct MMUContext *ctx;

ULONG oldflags;

void *logical;

oldflags = PhysicalLocation(ctx,&logical,sizeof(ULONG));

/* "logical" contains now the physical address */

will do this for you. The third step is to pre-calculate all the descriptors you plan to make use of.
Since indirect descriptors are used for time-critical applications, this step avoids the overhead in
latter steps. The following call will do this:

struct MMUContext *ctx;

ULONG mask,oldflags;

ULONG address,flags,descriptor;

descriptor = BuildIndirect(ctx,address,

(flags & mask) | (oldflags & (~mask)));
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As always, this function requires the Context in the ctx argument. However, unlike SetPageProp-
erties() or SetProperties(), only a subset of the property bits are provided. Especially, there is
no MAPP_REMAPPED bit. This bit is handled differently. Instead of specifying a logical
address and — possibly — a different physical address, you need to specify the physical address
itself. If it is identical to the logical address, no re-mapping will occur, and if its not, the access will
be re-directed to the specified page. Again, this address must be a multiple of the page size. The
physical address should be obtained from the logical address by calling the PhysicalLocation()
function, as before, even in case you do not plan to re-map it. It is good to write software in a de-
fensive way, and it might happen that the memory you allocated in first place for the page has been
re-mapped already. Since BuildIndirect() does not offer a mask parameter, the above example
call shows how to mask in the desired flags yourself, and how to carry over parts of the old flags.

Depending on the hardware, only a subset of the following property bits is supported:

MAPP_WRITEPROTECTED The page will be write protected. Writes to this area will cause
a segmentation fault.

MAPP_USED The “U” bit of the descriptor will be set. The MMU will set this bit if the page
gets accessed in any way, too.

MAPP_MODIFIED The “M” bit of the descriptor will be set. The MMU sets this bit, too,
on any write access that goes into this page. Due to a hardware feature of some of the 68K
MMUs, never ever set this bit together with MAPP_WRITEPROTECTED and without
MAPP_USED or the MMU might hang.

MAPP_INVALID The page will be marked as invalid. Accessing it will cause a segmenta-
tion violation exception. However, note that the bit MAPP_REPAIRABLE is not avail-
able as property bit for indirect descriptors itself. You may, however, still ask the MuLib
for the repair service by setting the MAPP_REPAIRABLE bit in the corresponding
MAPP_INDIRECT descriptor pointing to your descriptor. Even though indirect de-
scriptors support the user data field to some extend, using MAPTAG_USERDATA is
discouraged. This is because the descriptor will not be able to hold all 32 bits of your data,
some of the lower order bits will be required for the purposes of the MMU and are therefore
lost.

MAPP_CACHEINHIBIT The corresponding memory page will not be kept in the CPU cache.

MAPP_IMPRECISE Only available if MAPP_CACHEINHIBIT is set as well, this tells
the 68060 MMU to react a bit sloppy on real bus errors. Ignored and read as zero by all other
MMUs.

MAPP_NONSERIALIZED Again, this is only valid for MAPP_CACHEINHIBIT pages,
and ignored and read as zero by all except the 68040 MMU. It tells the 68040 that it may
re-order accesses to the page to improve performance.

MAPP_COPYBACK Enable the copy-back cache for cache-able pages. This bit is ignored and
read as zero by the 68030 and 68851 MMU.

MAPP_USERPAGE0 Set the “user page attribute 0” CPU output line on accesses of this page.
This is only available for the 68040 and 68060 and ignored and read as zero for the 68030 and
68851. There’s currently no Amiga hardware I know of which keeps care about this hardware
line anyhow.

MAPP_USERPAGE1 Sets the “user page attribute 1” CPU control line.
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MAPP_GLOBAL Sets the “global” bit of the descriptor, which is only available for the 68040
and the 68060. It is ignored and read as zero by the 68030 and the 68851. Setting this bit
means that certain specialized instructions will not flush this descriptor from the MMU cache.
The MuLib does not use such instructions. It will always flush descriptors independent of the
G bit. There is currently little use of this bit.

Passing in unsupported bits causes the MuLib to ignore these bits. Especially, if you read back
the descriptor later, you might find different properties than intended due to lack of hardware
support. For example, if you set the MAPP_COPYBACK bit on a 68030 based machine, and
you check the descriptor later, the bit will be reset. Especially, note that the following properties
are not supported:

MAPP_REMAPPED is unsupported because you have to pass in the physical destination any-
how.

MAPP_REPAIRABLE is unsupported. However, you still get the same service by setting this
bit “one level up” in the MAPP_INDIRECT descriptor pointing to your new descriptor.

MAPP_SUPERVISORONLY is unsupported. To emulate it, build separate descriptors for the
user and the supervisor Context and set the user descriptor to MAPP_INVALID.

MAPP_ROM is unsupported. However, you are still able to get this feature if you set the
descriptor to MAPP_WRITEPROTECTED and, additionally, set this bit “one level up”
in the MAPP_INDIRECT descriptor.

MAPP_WINDOW is not supported, an indirect descriptor cannot redirect to a descriptor from
another Context.

MAPP_USER0 and all other USER flags are unsupported because they are higher level em-
ulations of the MuLib and have no correspondence at the hardware level. Note that the
MAPP_USERPAGE attributes are hardware flags different from the MAPP_USER
attributes.

MAPP_SHARED because Context sharing is a high-level feature not reflected on the hardware.

The result code of BuildIndirect() is either a valid descriptor value, or the special result code
BAD_DESCRIPTOR defined in mmu/descriptor.h. Especially, NULL does not indicate an error.

Indirection’s Unmasked. You should have noticed that BuildIndirect() does not come
with a mask-type argument. Hence, it is not able to read and alter the current property
flags of the page you want to address. Instead, you’ve to read the property flags yourself,
for example by GetProperties() or PhysicalLocation(), and have to mask-in the
desired flags yourself. This step is important because it is not clear whether the memory
your page will be kept is is, for example, cache-able or not. Hence, you have to carry
the cache flags over, as in the example above.

The next step is to set your descriptor to one of the pre-calculated values. For that, call

ULONG *descriptor,address,value;

SetIndirect(descriptor,address,value);

which writes the pre-calculated value into your descriptor. This is also the function which should
be called to exchange descriptors rapidly. The descriptor argument is the physical location of the
hardware descriptor you allocated in the first step and whose physical address has been calculated
in the second step. The value argument is the descriptor value calculated by BuildIndirect()
before. Finally, address is the logical address which is covered by this descriptor. In case you want
to re-use the descriptor for more than one logical address, pass in -1L instead as a special case.
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Keep Care about the Cache! Unlike the SetPageProperties() call, the SetIndirect()
function does not touch the CPU cache for the page you’ve modified, mainly for speed
reasons. Therefore, it is absolutely necessary to push back the cache of the page(s)
whose MMU setup is altered by SetIndirect(). The Exec functions CacheClearE()
and CacheClearU() will help you here. If you do not follow this rule, you might observe
strange effects up to complete CPU lockups. The one and only exception to this rule is
that you do not need to push caches if you change the physical destination of the logical
page(s) addressed by the indirect descriptor you installed. This works even for the 68851
and the 68030 whose cache is addressed by logical rather than physical addresses. The
MuLib knows about this special case.

Finally, as a last step, you have to link in your descriptor into the MMU setup. This re-
quires calling either SetProperties() and RebuildTree() or SetPageProperties() with the
property flags bit MAPP_INDIRECT set and the physical address of your descriptor as MAP-
TAG_DESCRIPTOR tag item. For software emulation features such as access to the CPU
data pipeline and defensive write protection, you may want to MAPP_REPAIRABLE and
MAPP_ROM bits as mentioned in the list above. They need to be set here and not in your
descriptor. The MMU will now use your new descriptor, and you’re able to re-define the descriptor
very rapidly with the SetIndirect() call.

In case you want to alter more than one indirect descriptor at a time, the MuLib offers a function
for re-defining a complete array of descriptors at once. This function, SetIndirectArray() is
typically faster than calling SetIndirect() in a loop. Its synopsis is as follows:

ULONG *descriptors,*values,num;

SetIndirectArray(descriptors,values,num);

The first argument, descriptors, points to the physical base address of the indirect descriptors to
be filled in. Note that you must have ensured that this array is really a continuous array of physical
addresses, i.e. it is not possible that this array, even though a continuous range of logical addresses,
is split into several non-adjacent physical memory pages. The PhysicalLocation() function is
able to check this, see the “DMA Support Functions” chapter for more information on this call.
For fragmented memory models, you have to call SetIndirectArray() several times, once for each
fragment.

The values array points to a ULONG array of the MMU flags that should be filled in, one
ULONG for each descriptor. The SetIndirectArray() function will, “morally speaking”, copy
the contents of this array to the first array, but considering the caveats when modifying MMU
descriptors. The last argument is the number of descriptors to be set and hence the size of both
arrays. Passing zero here is allowed and is a no-op.

As for SetIndirect(), proper cache management is up to yourself. Hence, if you alter the cache
modes, e.g. from MAPP_COPYBACK to MAPP_CACHEINHIBIT, it is up to you to push
back the CPU caches by means of CacheClearU() or CacheClearE().

Finally, to read an indirect descriptor, call

struct MMUContext *ctx;

ULONG *descriptor;

struct AbstractDescriptor adt;

GetIndirect(ctx,&adt,descriptor);

The ctx argument is the Context, as always, and descriptor is the physical address of the descriptor
to be read. The adt structure need not to be initialized. It is filled in by the call as follows:
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struct AbstractDescriptor { /* defined in mmu/descriptor.h */

ULONG atd_Pointer;

ULONG atd_Properties;

UWORD atd_LowerLimit;

UWORD atd_UpperLimit;

UBYTE atd_ThisType;

UBYTE atd_NextType;

UWORD atd_reserved;

};

The adt_Pointer field is either the physical address the accesses to the page his descriptor is
installed for are redirected to, or the user data if this descriptor is of invalid type. Note that
providing user data for invalid indirect descriptors is discouraged because the MuLib will not be
able to preserve all 32 bits of your data. Otherwise, the adt_Pointer member will be the same
address that was passed in as physical destination to BuildIndirect().

atd_Properties is the set of property flags read from the descriptor. This need not to be
identical to the properties setup by BuildIndirect(), for two reasons: First, the MMU sets the
“U” and “M” bits as soon as the target page is read or written to. Second, not all MMUs support
all properties. Unavailable properties are ignored by BuildIndirect(), and read as zero by this
function.

Please leave all other fields alone, they are not documented and should not be read, and please
do not try to read the descriptor yourself. First, it is hardware dependent, and second, you would
need to take care about some hardware features and side-effects such as caches and their interaction
with the MMU.

Beware of Oddities! The alignment rules for indirect descriptors might seem strange in-
deed. As long as you do not use GetIndirect(), long word alignment is good enough.
Since AllocMem() guarantees even alignment to quad words, ordinary Exec memory
allocations will be sufficient. However, special cache related considerations when reading
the descriptors require that they do not share cache lines with ordinary program code or
data. Therefore, if you allocate memory for descriptors and you plan to call GetIndi-
rect() on them, make sure that you allocate a multiple of the cache line size, which
is 16 bytes, and make sure that the memory block you allocated is aligned to a cache
line boundary. Hence, the MuLib function AllocAligned() is required here. When
allocating a complete array of descriptors, each individual descriptor in this array need
not to be — and will not be — aligned, but the array boundaries have to. Therefore,
round the array size up to the next multiple of 16 bytes, and pass 16 as alignment pa-
rameter to AllocAligned(). Not following this guideline might appear to work most of
the time, but GetIndirect() may return improper data and certain “surprise moments”
may show up. The SetIndirect() calls are not touched by this problem.

The following example program shows how to use indirect descriptors:

/*********************************************************

** IndirectTest **

** **

** Test indirect page descriptors of the MuLib **

** Release 1.01 **

** **

** (c) 19.03.2000 Thomas Richter **

*********************************************************/

/*
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* Compile and link without startup code.

*/

/* Includes */

#include <exec/types.h>

#include <exec/memory.h>

#include <dos/dos.h>

#include <mmu/context.h>

#include <mmu/mmutags.h>

#include <mmu/descriptor.h>

#include <proto/exec.h>

#include <proto/dos.h>

#include <proto/mmu.h>

#include <string.h>

/* Protos */

int __saveds main(void);

int RunTests(void);

void DumpData(UBYTE *src,ULONG size);

/* Statics */

char version[]="$VER: IndirectTest 1.01 (19.03.2000) (c) THOR";

struct ExecBase *SysBase;

struct DosLibrary *DOSBase;

struct MMUBase *MMUBase;

/* main */

int __saveds main(void)

{

int rc=25;

/*

** Since we want to link without startup code,

** we need to open the system libraries here...

*/

SysBase = *((struct ExecBase **)(4L));

/*

** Open DOS and MMU

**/

if (DOSBase = (struct DosLibrary *)OpenLibrary("dos.library",37L)) {

if (MMUBase = (struct MMUBase *)OpenLibrary("mmu.library",42L)) {

rc = RunTests();

CloseLibrary((struct Library *)MMUBase);

} else {

Printf("IndirectTest failed: This program "
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"requires the mmu.library V42 or better.\n");

rc = 10;

}

/*

** Everything above 64 is a system

** error code we print over the console.

*/

if (rc>64) {

PrintFault((LONG)rc,"IndirectTest failed");

rc = 10;

}

CloseLibrary((struct Library *)DOSBase);

}

return rc;

}

/* RunTests */

int RunTests(void)

{

struct MMUContext *ctx;

struct MinList *ctxl;

ULONG pagesize;

ULONG *descriptor,*descriptorp;

ULONG values[2];

ULONG props[2];

UBYTE *page,*pagep[2];

int rc=25;

/*

** Get the context we’re currently using

** and its page size

** furthermore, allocate a page.

*/

ctx = CurrentContext(NULL);

pagesize = GetPageSize(ctx);

page = AllocAligned(pagesize*2,

MEMF_PUBLIC|MEMF_CLEAR,pagesize);

if (page) {

/*

** Now allocate memory for the descriptor

** this must be long-word aligned, hence

** an AllocMem is fine here.

** However, we need to know the physical location

** of the descriptor.

*/
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descriptor = AllocMem(sizeof(ULONG),MEMF_PUBLIC);

if (descriptor) {

/*

** Compute physical locations

** We do not assume that PhysicalLocation()

** truncates the address. All values are

** long/page aligned longs/pages, hence never cross a

** page boundary.

*/

descriptorp = descriptor;

PhysicalLocation(ctx,(void **)&descriptorp,&pagesize);

/* And now for the pages */

pagep[0] = page;

props[0] = PhysicalLocation(ctx,(void **)&pagep[0],&pagesize);

pagep[1] = page+pagesize;

props[1] = PhysicalLocation(ctx,(void **)&pagep[1],&pagesize);

if (pagep[0] && pagep[1] && descriptorp) {

/*

** Lock the context and make a backup of it.

**

*/

LockMMUContext(ctx);

if (ctxl=GetMapping(ctx)) {

/*

** Pre-calculate the values for the descriptors.

** The first descriptor maps the page to its TRUE physical

** location, the second one to the ROM, write-protecting

** it.

** Note that we need to use the physical addresses here.

**

** MAPP_ROM protection must be archived by setting this

** property bit "one level up".

**

** We furthermore set USED and MODIFIED to avoid unnecessary

** MMU writebacks, and transfer the old properties back

** into the descriptor properties

**

** Note that this call returns BAD_DESCRIPTOR in case

** of an error, not NULL.

*/
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values[0] = BuildIndirect(ctx,(ULONG)(pagep[0]),

props[0]|MAPP_USED|MAPP_MODIFIED);

values[1] = BuildIndirect(ctx,(ULONG)(pagep[1]),

props[1]|MAPP_USED|MAPP_WRITEPROTECTED);

if ((values[0] != BAD_DESCRIPTOR) &&

(values[1] != BAD_DESCRIPTOR)) {

/*

** Install the descriptor

** The first parameter is the physical address

** of the descriptor, the second the

** logical address of the page

** and the last the descriptor to install

*/

SetIndirect(descriptorp,(ULONG)page,values[0]);

/*

** Now install this descriptor

** We set this to MAPP_ROM because we want emulated

** ROM writeprotection.

** This is ignored if the descriptor itself is

** not write protected anyhow.

** We need the physical location of the descriptor

** here.

*/

if (SetProperties(ctx,MAPP_ROM|MAPP_INDIRECT,

MAPP_ROM|MAPP_INDIRECT,

(ULONG)page,pagesize,

MAPTAG_DESCRIPTOR,descriptorp,

TAG_DONE)) {

if (RebuildTree(ctx)) {

/* Everything’s fine.

** copy some dummy data into the page

*/

memset(page,’*’,(size_t)pagesize);

/* now print parts of it */

DumpData(page,0x10);

/*

** install the other descriptor

*/

SetIndirect(descriptorp,(ULONG)page,values[1]);

/*

** Dump it again. Should be all zero now.
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*/

DumpData(page,0x10);

/* Try to write to it. This should

** fail quietly.

*/

*page = ’A’;

/* And dump it again */

DumpData(page,0x10);

/*

** install the old descriptor

** again

*/

SetIndirect(descriptorp,(ULONG)page,values[0]);

/*

** Now reset the context data.

** Disable the MAPP_ROM and MAPP_INDIRECT

** features. This call shouldn’t fail or

** we are in trouble

*/

if (SetProperties(ctx,0,MAPP_ROM|MAPP_INDIRECT,

(ULONG)page,pagesize,TAG_DONE)) {

/* Restore the former MMU tree */

if (RebuildTree(ctx)) {

/*

** everything is fine now.

*/

rc = 0;

}

}

if (rc) {

/*

** We’re now in trouble.

** The old context couldn’t be restored.

** Therefore, we do not release the descriptors

** such that the accesses are at least right,

** and restore the high-level by SetPropertyList()

** below. This will cause a mild memory leak,

** but the system will be fine.

*/

Printf("IndirectTest: Can’t restore the context.\n");

descriptor = NULL;

}
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} else Printf("IndirectTest: Building the context failed.\n");

} else Printf("IndirectTest: Can’t install the "

"new descriptor.\n");

/*

** In case of an error, we restore now the high

** level of the context.

** This is all we could do.

** The high-level looks then fine again,

** and the low level contains either an

** indirect descriptor which we can’t get

** rid of, but which maps ok, or is

** unchanged. The system will be fine

** in both cases.

*/

if (rc) {

SetPropertyList(ctx,ctxl);

}

} else Printf("Can’t build the new descriptors.\n");

/* Release the mapping */

ReleaseMapping(ctx,ctxl);

} else rc = ERROR_NO_FREE_STORE;

/*

** Release the MMU Context lock

*/

UnlockMMUContext(ctx);

} else Printf("IndirectTest: Can’t perform the logical "

"to physical translation.\n");

/*

** now release the descriptor

*/

if (descriptor) {

FreeMem(descriptor,sizeof(ULONG));

}

} else rc = ERROR_NO_FREE_STORE; /* of if descriptor */

FreeMem(page,pagesize*2);

} else rc = ERROR_NO_FREE_STORE; /* of if page */

return rc;

}

/* DumpData */

void DumpData(UBYTE *src,ULONG size)

{
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/*

** A pretty dumb memory dump

*/

Printf("Memory contents at 0x%08lx : ",src);

while(size) {

Printf("%02lx ",*src);

src++;

size--;

}

Printf("\n");

}

5.4 Shared Indirect Descriptors

If you install indirect descriptors into a parent context and share the corresponding address space
region from various children, the indirect descriptors describing the shared pages will be shared
as well. This means that the MMU will use the same physical descriptors for the parent and all
children and modifications made on the descriptors will become active immediately for both the
parent and all children. Note that the situation is somewhat reverse to the GetPageProperties()
and SetPageProperties() functions which do not forward changes from the parent to the children
automatically.

5.5 Function Reference

The following is again the function reference for this chapter. The PhysicalLocation() call is
explained and listed in the “DMA support functions” chapter below.

Table 3: Low-Level MMU Tree Control Functions

MuLib function Description

SetPageProperties() Define the low-level MMU setup
GetPageProperties() Read the low-level MMU setup
GetPageUsedModified() Read and clear U and M flags
BuildIndirect() Pre-calculate an indirect descriptor
SetIndirect() Define an indirect descriptor
SetIndirectArray() Define an array of indirect descriptors
GetIndirect() Read an indirect descriptor
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6 Context Windows

Switching the page configuration within a context with indirect descriptors as explained in the
previous section is fast, but unpractical if the configuration for a large address region has to be
changed. Every indirect descriptor only handles a single page, and with the size of the region the
number of descriptors to modify increases linearly.

The V46 of the MuLib thus introduces a new concept to address the above use case, namely
to toggle the MMU setup within a larger memory region quickly between a limited number of
possible pre-computed configurations. The address region does not even have to be contiguous and
may consist of multiple non-overlapping intervals. Unlike the higher level mechanism of “shared
contexts”, Context Windows are a low-level mechanism and hence can be switched within interrupts
or access handlers, but unlike indirect descriptors, Context Windows cooperate with the DMA
system of the Amiga and hence allow I/O transfer to and from the address space region of the
window.

A possible use case of this mechanism is to simulate contiguous access to an otherwise segmented
I/O device. For that, one could reserve a contiguous access window within the address space of
the CPU within which this device appears. The window would be split into N distinct regions,
where each region corresponds to one particular configuration of the I/O device to be mapped in.
Whenever the CPU tries to access one of the windows, the MMU traps the access, checks which
of the N regions was accessed, and maps in the I/O device into the target region. As the MMU
remapping is transparent to user programs, the I/O device now appears as one contiguous block of
addresses, even though each address corresponds to a particular configuration of the device itself.

From the perspective of the MuLib, this requires creating a Window in the context whose
mapping is to be dynamically changed. As for real windows, something — in this case another
MMU Context — appears behind this window. That is, in the window region, the mapping of one
out of a set of multiple additional Contexts appears. By switching the Context behind the window,
the mapping of the original context in the window region can be modified without ever touching
the original context.

The following steps are required for the above switching mechanism: First, create N additional
contexts, one context for each possible configuration within the address region you want to modify:

struct MMUContext *set1,*set2;

set1 = CreateMMUContext(TAG_DONE);

set2 = CreateMMUContext(TAG_DONE);

In the above code, only two different configurations for the window region are possible as only two
contexts are created. However, you are only limited by available memory here. These contexts will
then appear within the window, and can be switched between.

Second, for each possible configuration, define the MMU configuration within the memory region
of the window. The configuration outside of the address region(s) of the window does not matter.
For that, use the high-level function SetProperties():

BOOL success = TRUE;

success &= SetProperties(set1,MAPP_REMAPPED,~0,address1,size1,

MAPTAG_DESTINATION,target1,TAG_DONE));

success &= SetProperties(set1,MAPP_INVALID ,~0,address2,size2,

TAG_DONE);

success &= SetProperties(set2,MAPP_INVALID ,~0,address1,size1,

TAG_DONE);

success &= SetProperties(set2,MAPP_REMAPPED,~0,address2,size2,

MAPTAG_DESTINATION,target2,TAG_DONE));
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In the above example, the entire memory window is separated into two sub-regions, one from
address1 of size size1, and a second from address2 of size size2. In the first configuration,
recorded in set1, the first sub-region is remapped to a target memory region given by target1, and
the second sub-region is invalid such that accesses will be trapped. In the second configuration,
recorded in set2, the situation is just the reverse, and the other half is mapped to target2. In a
real-life example, MAPP_REMAPPED should also include the proper cache configuration for
the regions, e.g. MAPP_CACHEINHIBIT.

As a second step, a Context Window needs to be created:

struct MMUContext *ctx,*set1,*set2;

struct MMUContextWindow *window;

window = CreateContextWindow(ctx,set1,set2,NULL);

The above call takes the following arguments: The first argument is the Context within which
a window is to be installed. All remaining arguments form a NULL terminated list of possible
configurations for this window. For usage from assembly language, the library function Create-
ContextWindowA() takes as first argument a pointer, and as second argument a pointer to a
NULL terminated list of Context pointers.

The resulting window is a pointer to an opaque structure that administrates the window. It is
destroyed by

struct MMUContextWindow *window;

ReleaseMMUContextWindow(window);

The individual contexts that are part of the window are not required for destruction.

Once the configurations in the form of Contexts and the Context Window itself have been
created, the window needs to be drilled into the original context. For that, use the high-level
function SetProperties() that was already introduced above, but this time on the context within
which the window should appear.

struct MMUContextWindow *window;

struct MMUContext *ctx;

BOOL success;

success = SetProperties(ctx,MAPP_WINDOW,~0,

address,size,

MAPTAG_WINDOWCTXPTRPTR,window,TAG_DONE));

In the above, ctx is the context within which the window shall be established, and window is the
Context Window created above that holds the possible configurations for the windowed region. The
address and size parameters indicate the memory region that is configurable through the window.

Multiple Fragmented Windows Possible. It is not necessary that the window is contiguous,
as in the above example. A single Context Window may also extend over multiple non-
overlapping address regions. Each address region that should become part of the window
needs to include the MAPP_WINDOW property. You are neither limited to a single
window per context. Multiple windows are possible, each of which comes with its own
MMUContextWindow structure. The MuLib distinguishes between windows through
the MAPTAG_WINDOWCTXPTRPTR tag, which is different from window to
window.
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The property MAPP_WINDOW indicates that this region of the address space becomes a
window that is controlled by the Context Window structure given by the argument to the MAP-
TAG_WINDOWCTXPTRPTR tag. This property overrides all other properties, i.e. they are
completely replaced by the contexts that appear in the window.

After the memory window is setup, it requires an additional layout step that aligns the Context
within the window such that a single MMU table setup can represent all possible configurations of
the window. For this, call

struct MMUContextWindow *window;

BOOL success;

success = LayoutContextWindow(window);

The call may fail in case not sufficient memory is available to update the target context in the
window region.

Next, the MMU tables for all contexts need to be rebuild by RebuildTrees(). The arguments
to this function should be the Context containing the window, as well as all additional contexts that
may appear within the windowed region of the first Context:

struct MMUContext *ctx,*set1,*set2;

BOOL success;

success = RebuildTrees(ctx,set1,set2,NULL);

By default, the window is unmapped, i.e. nothing appears in the windowed region, and hence,
every access to an address within the window creates an exception. Such exceptions can be caught
by MMU Exception handlers, introduced in section 8. Within an exception handler, one would
typically install one out of several possible contexts in the window. For that, call

struct MMUContext *ctx,*set;

struct MMUContextWindow *window;

BOOL success;

success = MapWindow(ctx,set,window);

The first argument ctx is the Context into which the window has been drilled, the second argument
set is the Context that appears within the window. Last but not least, window is the MMUCon-
textWindow itself. If the second argument set is NULL, then the window will become unmapped
again, i.e. every access to an address within the window region(s) will create an access fault.

The above call does not yet provide ideal performance as the MuLib has to compute which
descriptor entries to update every time. Provided the address range of the Context Window did not
change, and furthermore provided the Contexts that are supposed to appear in the window did not
change either, the MuLib provides also a caching mechanism that allows faster switching.

For creating the cache, call

struct MMUContextWindow *window;

BOOL result;

result = RefreshContextWindow(window);

right after having rebuild the MMU trees of the context and its windows, i.e. right after Re-
buildTrees(). This will setup a list of descriptors to be modified which is stored in the internals
of the Context Window.

Then, to switch the Context within the Window, use
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struct MMUContext *ctx,*set;

struct MMUContextWindow *window;

BOOL success;

success = MapWindowCached(ctx,set,window);

This call operates otherwise identical to MapWindow() except that it will typically perform better
as it takes advantage of the cache. Note, however, that you must rebuild the cache if you either
modify the location of the cache window, or modify the contexts that appear in the cache window.
That is, if the MMU layout within the address regions making up the window change, the cache
must be rebuild.

The Window Recipe A series of calls is necessary to make Context Windows work. First,
create the contexts that represent all possible configurations of the window. Then define
all mappings of the contexts that can appear in the window. Third, create the window.
Fourth, mark the regions of the target context within which the window should appear.
Fifth, layout the window. Then rebuild the MMU trees of the target contexts and the
contexts that appear in the window. Finally, refresh the cache and map the window
through the cache, or just map the window without a cache.

6.1 Function Reference

The following list contains an overview on Context Window related functions. Note that it requires
V46 of the library to have them available.

Table 4: Context Window Functions

MuLib function Description

CreateContextWindow() Create a context window
ReleaseMMUContextWindow() Destroy the window
LayoutContextWindow() Update the layout of the window
MapWindow() Change the mapping of the window
RefreshContextWindow() Build or re-build the window cache
MapWindowCached() Change the mapping, using the cache
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7 DMA Support Functions

All the addresses seen by software, i.e. program code, are logical addresses, they are translated by
the MMU before they arrive at the memory and I/O chips in the form of electrical signals. However,
DMA controllers such as SCSI host adapters bypass the CPU and the MMU and address memory
directly, of course using physical addresses — there is no MMU between the controller and the
RAM. Additionally, the data in RAM might not be “up to date” because the most recent data in
the cache might not yet be written out to RAM. Moreover, the CPU might read parts of the I/O
buffer and hence might load obsolete data into the cache without noting that this data is about to
be altered by an external bus master. Therefore, the Os provides DMA control functions: Namely,
to translate logical to physical addresses and to avoid cache race conditions.

7.1 Logical to Physical Translation Functions

As for most MuLib related calls, two different functions are available to translate a logical to a
physical address: A high-level call which makes use of the data set constructed and controlled
by SetProperties() and GetProperties(), and a low-level call which operates on the MMU
descriptors written by SetPageProperties() and read by GetPageProperties(). Which of the
two calls is appropriate depends on your requirements: The high-level call

struct MMUContext *ctx;

ULONG props,length;

void *address;

props = PhysicalLocation(ctx,&address,&length);

translates a complete address range, starting at the address and length passed it. It returns the
property flags for this address range. It sets both length and address to NULL in case the
corresponding physical page does not exist.

The reason why PhysicalLocation() takes pointers as arguments is that it updates both ar-
guments: The address to the physical address that corresponds to the logical address passed in,
and the length to the size of the largest continuously mapped block starting at the physical address
returned. This is because a contiguous range of logical addresses does not need to correspond to
a contiguous range of physical addresses. In fact, the MMU might have been used to create the
illusion of a contiguous memory space which is, on the hardware level, fragmented into several sepa-
rate blocks. In such a case, PhysicalLocation() may return only the first fragment of the physical
address range. If that happens, i.e. if the length returned is smaller than the length passed in,
additional fragments can be found by calling PhysicalLocation() again, but with a logical start
address to which the size of the first fragment has been added. This will return the physical address
and length of the next fragment. This process has to be repeated until all fragments have been
identified.

While PhysialLocation() performs the translation from logical to physical addresses, it is not
fit to translate addresses for DMA transfers because it does not update the CPU cache correctly,
and it only reads the high-level setting of the MMU setup, which might or might not be consistent
with the lower level. Furthermore, it is neither interrupt-callable, a property very desirable in any
device driver.

The PhysicalLocation() call has a corresponding low-level equivalent that reads MMU de-
scriptors directly on the hardware level, namely:

struct MMUContext *ctx;

void *logical,*physical;

physical = PhysicalPageLocation(ctx,logical);
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Unlike the former, this function is interrupt-callable and reflects the current state of the MMU
low-level setup, hence will be able to “see” modifications made by SetPageProperties(), but it
translates only one address at a time. However, it only translates the address of a single page a
time, and does neither handle caching issues correctly. It is for this reason also unsuitable for DMA
issues but provides a quick look at which translation the MMU actually performs.

7.2 DMA Memory Control Functions

To ease the implementation of proper MMU handling in DMA devices, the MuLib provides a
convenience function pair that translates a range of logical addresses to physical addresses while
also being interrupt-callable, namely DMAInitiate() and DMATerminate(). The results of
these two functions are also always consistent with the latest active high-level MMU setup, i.e. the
latest version that has been translated into the lower level and that is currently loaded to the MMU.
Context locking is not required.

The following function should be run to to initiate a DMA transfer, and to translate logical to
physical addresses:

struct MMUContext *ctx;

void *address;

ULONG length;

BOOL writetoram,ok;

ok = DMAInitiate(ctx,&address,&length,writetoram);

The parameters address and length specify the logical memory block to be transferred, and as
for PhysicalLocation(), the function may not only modify the address parameter to submit the
correct physical page, but may also change the length call in case the logical address range passed in
is not continuously mapped to a single memory block. The write argument must be set to TRUE
for data transports from the DMA device into memory, which would be, for example, a read access
for a harddrive. It must be set to FALSE for transferring data from memory to the device. Each
call to DMAInitiate(), even a call with a FALSE result code, must be matched by one and only
one call to DMATerminate():

struct MMUContext *ctx;

DMATerminate(ctx);

Note that this is different to how CachePreDMA() and CachePostDMA() handle errors or
non-continuous memory blocks.

The following example code show a typical application of DMAInitiate() and DMATermi-
nate(), like in a DMA device driver; the logical address base of the transfer, and the length as well
as the data transport direction are passed in as arguments:

int RunDMATransfer(BYTE *base,ULONG len,BOOL writetoram)

{

UBYTE *physical;

ULONG phylen;

BOOL fine;

int error;

while (len) {

physical = base;

phylen = len; /* translate this address range */
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fine = DMAInitiate(ctx,(void **)(&physical),&phylen,writetoram);

if (!fine) {

/*

** Generate an error as the user

** tries to read from or write to

** invalid or blank memory.

*/

DMATerminate(ctx); /* <-- REQUIRED !! */

return INVALID_ARGUMENTS;

}

/* Initiate the DMA cycle */

error = InitiateTheDMA(physical,phylen);

/*

** In this very simple application, we do not

** multi-thread. In the ideal case, we would be

** free here to initiate the I/O of other

** devices.

*/

WaitForDMACompletion();

/* Terminate the DMA */

DMATerminate(ctx);

if (error) return error;

/* and now go for the next block */

base += phylen;

len -= phylen;

}

/* everything’s fine */

return RESULT_FINE;

}

Similar to PhysicalLocation(), the DMAInitiate() and DMATerminate() functions do not
touch the CPU caches. Proper cache handling is up to your code, again.

Comes in Pairs. To note this again: It is very important that DMATerminate() is
called correctly, once and only once for each single DMAInitiate() call, regardless of
the return code. If you do not follow this guideline, all further RebuildTree() calls will
wait forever.

Since there is currently no mechanism how a Task invoking a DMA transfer makes its Context known
to the DMA device — note that most DMA transfers are initiated by a filing system, and not directly
by the task requiring the data — the ctx parameter of these functions is currently ignored, but
reserved for future applications and refinements. The DMAInitiate() and DMATerminate()
functions operate always on the data set of the public Context. Therefore, for consistency with
future improvements, please pass in the public Context only.

7.3 DMA and Cache Control functions

Even though DMAInitiate() handles the translation from logical to physical addresses, it does not
keep care about proper CPU cache handling. Two Os functions handle all this at once, CacheP-
reDMA() and CachePostDMA(). Both functions are not part of the mmu.library, precisely
speaking, but are Exec functions instead. Nevertheless, their implementation code is provided by

38 The MuLib Programmer’s Manual



the MuLib as soon as it is loaded. Unfortunately, the control logic of these two functions is awkward,
and it is therefore necessary to discuss them here again:

APTR logical,physical;

ULONG length,flags;

physical = CachePreDMA(logical,&length,flags);

This function should be called before a DMA operation is started. Its purposes are manifold: First,
it translates the logical address passed in into a physical address, its result code. Second, it checks
for non-continuously mapped memory. In case the data block passed in is not one continuous block
of physical memory, the length is truncated and a smaller length counter is returned. This is why
you have to pass a pointer to the length — the function might alter this parameter. Finally, flags
are passed in. The following bits are currently defined in exec/execbase.h:

DMA_Continue This flag must be set on the second and all further calls to CachePreDMA() in
case your code called the function again to continue DMA on a physically fragmented memory
block.

DMA_ReadFromRAM Set this flag to indicate that the intended DMA transfer is from RAM
into the external device, e.g. a harddisk write access.

Note that CachePreDMA() does not return an error in case the memory passed in is not mapped
at all. The function will either provide a dummy page for the operation, or will terminate with
the infamous “guru”. Furthermore, no Context parameter is available, which means that CacheP-
reDMA() performs the page translation always on the public Context. Unfortunately, the operating
system does currently not provide any means to pass a Context along with a DMA transfer.

Unlike the DMAInitiate() interface, CachePostDMA() must be called only once, namely
after the DMA transfer is complete — or has been aborted. Here is its syntax:

APTR logical;

ULONG length,flags;

CachePostDMA(logical,&length,flags);

The logical parameter has to be set to the initial logical address the DMA transfer has been started
with. Note that you must not pass in a logical address which has been used in some subsequent calls
to CachePreDMA(). The length parameter has to be set to the complete length of the DMA
transfer, as initially intended. Do not pass in a truncated length as returned by CachePreDMA().
Finally, the following flags are available:

DMA_NoModify Set this flag in case the memory range hasn’t been modified, hence to allow
the code to avoid an unnecessary cache flush.

DMA_ReadFromRAM This flag must be set consistent to the CachePreDMA() call, namely
if the data transfer direction is from RAM to the DMA controller.

Here’s again an example code which shows how the two function should be called. Its arguments
are as in the examples above.

int RunDMATransfer(BYTE *base,ULONG len,BOOL writetoram)

{

UBYTE *physical,*logical;

ULONG phylen,remaining,flags,iflags;

BOOL fine;
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int error;

logical = base;

remaining = len;

error = RESULT_FINE;

/* Set DMA_ReadFromRAM on RAM --> device transfer */

flags = (writetoram)?(0):(DMA_ReadFromRAM);

iflags = (writetoram)?(0):(DMA_ReadFromRAM|DMA_NoModify);

while (remaining) {

phylen = remaining; /* translate this address range */

physical = CachePreDMA(logical,&phylen,flags);

/*

** We do not get a result code here. Maybe we

** should check whether "physical" is zero.

**/

if (physical==NULL) {

/*

** Generate an error as the user

** tries to read from or write to

** invalid or blank memory.

**

** Note that CachePostDMA() requires

** the initial parameters!

*/

error = INVALID_ARGUMENTS;

break;

}

/* Initiate the DMA cycle */

error = InitiateTheDMA(physical,phylen);

/*

** In this very simple application, we do not

** multi-thread. In the ideal case, we would be

** free here to initiate the I/O of other

** devices.

*/

WaitForDMACompletion();

/* Terminate the DMA */

if (error) break;

/* and now go for the next block */

logical += phylen;

remaining -= phylen;

/* we *MUST* set this flag, though */

flags |= DMA_Continue;

}
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/* And finally, only once, the following must be called... */

CachePostDMA(base,len,iflags);

/* but with the initial parameters */

return error;

}

Complicated Memory Access. DMA is a touchy business, even more on the more advanced
members of the MC68K family which implement a copyback cache. Therefore, please
study the example above carefully. Especially consider situations where one continuous
block of logical memory does not refer to one continuous block of physical memory, i.e.
the memory model is fragmented. Failing to call these two functions, or DMAIniti-
ate() due to “speed reasons” is a very poor excuse and might fail for more advanced
applications of the “MMU Majik”.

7.4 Background Information on DMA and Cache Control functions

Even though it seems to be perfectly sufficient to flush the caches before the DMA transfer to make
sure the DMA device reads proper data, it is not. This is due to the way how the 68040 and 68060
caches work: They do not buffer single bytes, but complete “cache lines” which are 16 bytes in a
row, aligned to 16 byte boundaries. If the CPU reads from RAM, it typically fills the full cache
line, hence loads 16 bytes instead of just the requested size; and if the CPU has to perform a write
access, it first reads a full cache line from memory.

Consider now the following situation: The I/O buffer to be read from an external DMA device
is not aligned to a 16 byte boundary. Caches are flushed, initially, but before the DMA transfer
is initiated, another program writes to a memory location directly in front of the I/O buffer. The
cache line for the written byte overlaps now with the I/O buffer, and as the CPU reads and writes
full cache lines at once, it will be filled with data from the I/O buffer. Let’s suppose the DMA
operation completes successfully, hence the I/O buffer is really filled with the data read from the
DMA device. However, if the DMA driver code would now initiates a cache flush, the first bytes
of the I/O buffer would be overwritten with obsolete data. This is because the first bytes of the
I/O buffer are located in a cache line which has been filled before the device started reading, by a
memory access which did not even go into the I/O buffer. Therefore, copyback caching has to be
disabled for the pages at the boundary of the I/O buffer if the buffer is not aligned to cache lines.
This is what CachePreDMA() and CachePostDMA() perform.

A clever DMA device could avoid these problems by transferring the initial and final bytes of a
non-aligned I/O buffer by means of programmed I/O, or by copying the initial and final page to a
private memory buffer and perform the DMA from there.

7.5 Function Reference

We conclude with the function reference for this chapter:

Table 5: DMA Support Functions

MuLib function Description

PhysicalLocation() Translate a logical memory block to physical
PhysicalPageLocation() Low-level translate a logical address
DMAInitiate() Initiate a DMA transfer
DMATermiate() Terminate a DMA transfer

Exec function Description

CachePreDMA() Cache handling before DMA start
CachePostDMA() Cache handling after DMA completed
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8 MMU Exception Handling

The MuLib offers various sources for exceptions: First, native MMU exceptions, generated by page
faults or segmentation violations. These are generated whenever the CPU tries to access a page
that is marked as invalid or swapped. Other sources of native MMU exceptions are attempts to
access from user mode a supervisor-only page, or to write to a write-protected page.

Replacement functions for the tc_Switch() and tc_Launch() function pointers in the Task
structure are also based on the same type of exception mechanism, even though they are not “ex-
ceptional”. They become necessary because the native Os mechanism is no longer available as soon
as the corresponding Task has been attached to a Context explicitly. This is because the MuLib
requires these Exec vectors itself.

Third, the MuLib also generates an exception as soon as the high-level MuLib routines try to
install a descriptor on the low-level. All above exceptions are installed and removed in the same
way, the interface is identical for all of them. The first step is to build an exception hook handle,
and to attach it to a Context; this is done by the following function:

struct ExceptionHook *hk;

hk = AddContextHook(...);

The call is entirely tag-based, it does not take any “fixed” parameters. It takes the following tags
defined in mmu/mmutags.h:

MADTAG_TYPE Selects the type of the exception hook to be build. The types will be dis-
cussed in detail below, but to give a brief overview: MMUEH_SWAPPED handlers will
be called in case the CPU accesses a page which has been marked as “swapped out”, i.e. the
MAPP_SWAPPED property flag is set.

The MMUEH_SEGFAULT handlers are invoked on an access to a MAPP_INVALID
page, on a write to a MAPP_WRITEPROTECTED page, as well as on a user mode
access to a MAPP_SUPERVISORONLY page. They will not be called on a true hardware
access error because it is not the purpose of the MuLib to handle such exceptions. In case you
want to fetch true physical bus errors, you have to replace the default exec bus error handler
using the SetBusError() function described below. Two types of segmentation fault handlers
exist, global and Context specific handlers. The MuLib tries first to find a Context specific
exception handler, and if none is found or is able to handle the exception, it tries to run a
global handler. If this also fails, the default handler will be called, which will, unless replaced
by SetBusError() — you guessed right — run into a “Guru”. MuForce, for example, will
install a global exception hook.

The MMUEH_SWITCH and MMUEH_LAUNCH handlers are task specific exception
hooks which replace the tc_Switch() and tc_Launch() pointers of the Task structure which
are no longer available for Tasks that have been explicitly attached to a Context.

Last but not least, the MMUEH_PAGEACCESS handlers are called by the MuLib as
part of the RebuildTree() function when the library touches a low-level MMU descriptor
with a set MAPP_SINGLEPAGE bit. It allows programs that operate on the low-level
by SetPageProperties() and friends to get informed if their MMU setup is about to be
overwritten. MuGuardianAngel makes use of this technique, for example.

More about the specific exception classes will be found below.

MADTAG_CONTEXT This identifies the Context the exception is supposed to be attached to.
A Context tag item is required for the page fault MMUEH_SWAPPED and the page access
MMUEH_PAGEACCESS handlers. It can be left blank or set to NULL for the task-
specific exceptions MMUEH_SWITCH and MMUEH_LAUNCH. One special case is
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the segmentation fault handler MMUEH_SEGFAULT: If no Context is given, a global
segmentation fault handler will be installed which will be called from all Contexts provided
no Context specific handler is able to handle the exception.

MADTAG_TASK This tag item selects an exclusive task for which the exception hook should be
called. Since more than one task could be attached to a Context at a time, this tag item allows
to restrict exceptions to one specific task. However, adding too many task specific hooks to one
Context may slow down exception handling considerably. Especially, do not add task specific
hooks to supervisor Contexts. This tag item must be set for the MMUEH_SWITCH and
MMUEH_LAUNCH handlers because this exception type is Task specific by its purpose;
it is optional for all other types.

MADTAG_CODE This tag item must be given for all exception types because it points to the
start address of the exception handler code. Assembly is, even though not required, highly
recommended, to keep exception handling as fast as possible. All exception hooks are called
in the same way:

Register a0 points to the ExceptionData structure for the MMUEH_SWAPPED or
MMUEH_SEGFAULT handlers. It is loaded with a pointer to the PageAccessData
structure for MMUEH_PAGEACCESS handlers. Both structures are explained be-
low. Undefined for all other exceptions.

Register a1 loaded with the data you provided with the MADTAG_DATA tag item, see
below.

Register a4 for convenience for C style exceptions, this is loaded with the same data as
register a1, namely the user specific data provided by MADTAG_DATA.

Register a5 points to your code itself and is available as scratch register otherwise.

Register a6 points to the library base of the MuLib. This is definitely not a scratch register.

Registers d0,d1 a0-a1 and a4 and a5 are available as scratches, you may overwrite or modify
them in your handler. In case your code was able to handle the exception, you must set the
“Z” CPU condition code and clear register d0 and exit with an RTS. The MuLib code will
now test the “Z” bit directly for speed reasons. If your code bails out with a clear “Z” bit, the
MuLib assumes that your exception handler has not been able to handle the specific exception
and will call the next handler with a lower priority of the same handler type. The lowest
priority handler is always the default handler which will, in worst case, generate a guru.

MADTAG_DATA Handler specific data you may supply. This data will be loaded into the a1
and a4 registers before your code will be called.

MADTAG_NAME A name for the exception hook. Even though the name will be installed
into the hook data, no further use is made of it, and currently can’t be made of because the
ExceptionHook structure is undocumented intentionally.

MADTAG_PRI The priority for the exception hook, defaults to 0. Higher priority handlers
are called first, lower priority handlers later. Furthermore, for MMUEH_SEGFAULT
handlers, the MuLib first tries to call Context specific handlers, and re-directs the exception
to the global handlers in case no single Context handler accepted the fault.

The AddContextHook() function returns a handle to an intentionally undocumented Excep-
tionHook structure, or NULL in case it could not setup the hook structure, let it be due to
missing data, or due to lack of memory. Keep the returned “hook” as a “magic cookie” for all
further references.
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If a Context hook as been build, it is not yet active. This gives you a chance to prepare and
setup your program until the hook is really ready to be called. The final activation step is performed
by

struct ExceptionHook *hk;

ActivateException(hk);

Unlike AddContextHook(), this function and its counterpart

struct ExceptionHook *hk;

DeactivateException(hk);

are interrupt-callable. One should furthermore note that calls to ActivateException() and De-
activateException() do not nest. The latter, DeactivateException(), absolutely must be called
before the context hook is removed again by

struct ExceptionHook *hk;

RemContextHook(hk);

The RemContextHook() call will release the hook structure and all administration information
required for the hook, and will remove the hook from the system.

8.1 Page Fault and Segmentation Fault Handlers

In the following, the MMUEH_SEGFAULT and MMUEH_SWAPPED exceptions are dis-
cussed in detail. Both exceptions are generated by the MMU due to an invalid access to a page in
memory. The latter indicates that an attempt was made to access a “swapped out” page, whereas
the first usually indicates some kind of software fault. Exception handlers of the first kind would
typically print some debug information, whereas the second type should be used to re-load the
“swapped” data from disk. The MMUEH_SWAPPED exception handlers are only called in
case the faulty access hit a MAP_SWAPPED page, all other MMU related exceptions gener-
ate a “segmentation violation” by means of the MMUEH_SEGFAULT handler. The exception
handlers never see faults that are handled by the MuLib transparently, namely accesses to AbsEx-
ecBase, read accesses to valid addresses in the zero page, accesses to MAPP_BLANK memory
or write accesses to MAPP_ROM pages.

Not the Real Thing! An emulation can never be as fast as the real thing. Therefore,
avoid such accesses. Make a backup of AbsExecBase to a static variable instead.
For C authors, this is just the matter of choosing the proper prototype file, contact the
vendor of your compiler for details. Reads from the zero page chip memory no longer
happen if you use a recent Os release, 3.0 or better. Otherwise, use “MuMove4K” to
move the chip memory out of this critical area.

Branch cache faults of the 68060 are also handled by the library and hence do not require any special
care by your code. Furthermore, physical bus errors never reach the MuLib exception handling core
as they are filtered out immediately. If you must handle them, you have to replace the exec bus
error handler using the SetBusError() low-level function, but the MuLib will otherwise not be
able to help you to handle these exceptions, you are on your own! Due to the tricky nature of these
faults, especially for the 68040, and the rare use of them on the Amiga — I do not know a single
one — I decided not to handle them in the library.

In case a MMU generated “access fault” has been detected the MuLib cannot handle itself, it first
checks the origin of this exception. This means it checks whether the fault is due to a “swapped”
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page, or due to a software fault. It determinates whether the access was made in user or supervisor
mode and loads the Context responsible for this access. It then tries to find an exception handler:

✷ Try the handler of highest priority first. Try Context specific handlers first, if no Context
specific handler can be found, or none of these handlers is able to handle the fault, go for the
global handlers.

✷ Check whether this hook is activated or not, skip it if it is deactivated.

✷ Check whether the hook is “task specific”, i.e. whether the MADTAG_TASK tag was given
at the time the hook was build with AddContextHook(). If the hook is task specific, check
whether the faulty task is identical to the task handled by the hook and skip the handler if
this is not the case.

✷ As soon as a match has been found, call the routine at the address provided by the MAD-
TAG_CODE tag by loading the registers as listed above. This routine should be written in
assembly, mainly for speed reasons.

✷ If the handler returns with a set Z processor bit, return to the MuLib handling code and
proceed as indicated in the “ExceptionData” structure described below.

✷ If the handler returns with the Z bit cleared, continue the search. If no usable handler could
be found, run into the Exec default code.

In case you want make use of the exception data structure — and you usually do — please keep in
mind that it is only valid as long as your exception hook runs. This means that you possibly have
to make a copy of it for later use. Remember, too, that you’re called in supervisor mode, with all
interrupts disabled. Furthermore, one very important point:

AbsExecBase is a Big No-No. Do never ever access AbsExecBase in MMU exception
code. Even though this access might be tolerated under some conditions, it’s the death of
proper exception handling. Furthermore, if your code itself generates an exception, the
MuLib will call the Exec default handler and will not enter your handler recursively. This
means, it will “go guru”. Quite the same goes for write accesses into MAPP_ROM
memory, or accesses into the zero page the library would have to emulate.

If you need SysBase, use either a private copy, or the copy provided in the ExceptionData
structure. If you want to make sure whether a specific memory access goes to valid memory in order
to avoid a double access fault, use the low level functions like GetPageProperties() as they are
safe to be called from within interrupts and exceptions.

The MuLib’s Matter. There is no access to the CPU specific exception stack frame. Ex-
ception hooks are — and that’s just the point about the MuLib — CPU independent.
All data you need is provided in the exception data structure, do not make any assump-
tions about the type of CPU your code runs at, or how the stack frame looks like. This
is the matter of the library.

Finally, the ExceptionData structure shall be discussed. It is defined in mmu/exceptions.h

and provides all the information required to handle MMU exceptions in a CPU independent way.

struct ExceptionData {

struct Task *exd_Task;

struct MMUContext *exd_Context;

ULONG *exd_Descriptor;

ULONG *exd_NextDescriptor;

APTR exd_FaultAddress;

MMU Exception Handling 45



APTR exd_NextFaultAddress;

ULONG exd_UserData;

ULONG exd_NextUserData;

ULONG exd_Data;

APTR exd_ReturnPC;

ULONG exd_Flags;

ULONG exd_Properties;

ULONG exd_NextProperties;

UBYTE exd_internal;

UBYTE exd_FunctionCode;

BYTE exd_Level;

BYTE exd_NextLevel;

ULONG exd_DataRegs[8];

ULONG exd_AddrRegs[7];

UWORD *exd_SSP;

UWORD *exd_USP;

struct ExecBase *exd_SysBase;

struct MMUBase *exd_MMUBase;

};

The members of this structure have the following meaning:

exd_Task contains the pointer to the Task structure of the task that caused the exception. If
this hook was added to the supervisor Context, this field is meaningless and must be left
alone. This is simply because the library does not distinguish between a supervisor exception
in interrupt code, or in supervisor code called from a task.

exd_Context contains the handle of the Context responsible for the fault. This is always the
Context the hook was added to in case this is a Context specific hook.

exd_Descriptor contains a pointer to the true hardware MMU descriptor which handles the fault.
This pointer should usually be left alone. In case an indirect descriptor caused the access fault,
this does not point to the page descriptor, but to the indirect descriptor pointing to the page
descriptor, i.e. “one level higher” than what you might expect. In case you must read this
descriptor or write a new one, you absolutely must call CacheClearE() to make sure that the
descriptor is really written out.

exd_NextDescriptor In case of a misaligned access, i.e. an access that spawns two pages because
the access hit a page boundary, this is the descriptor for the end address of the access, and
exd_Descriptor is the descriptor for the first address of the access. If the access is aligned,
both pointers are identical. Note, however, that this descriptor need not to point to a higher
address. For example, a movem.l regs,-(ax) could cause a “backwards” misaligned exception.
Additionally, read the warnings above about reading and writing descriptors.

exd_FaultAddress the start address of the access that faulted.

exd_NextFaultAddress The end address of the access that faulted, inclusive. For a long word
access, this would be exd_FaultAddress+3, for a byte access, this would be identical to
exd_FaultAddress. Note that it may well be that exd_NextFaultAddress is a smaller
address than exd_FaultAdress. This might, for example, happen for a movem with pre-
decrement addressing mode, i.e. movem.l d0-d7/a0-a6,-(a7). Exception handlers must be
aware of this special situation.

In particular, while the combination of exd_FaultAddress and exd_NextFaultAddress
indicates which memory pages are affected by the current fault, they may not indicate the
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full range of addresses the CPU attempted to access during the faulting instruction. Details
depend on the CPU, the data-type and the instruction. For example, extended precision FPU
writes may appear as a series of long word accesses, and a movem instruction may only appear
as a single word or long word access at the faulting address(es), or as a fraction of the whole
address range affected by the instruction, where the fraction can be longer than a long word
but shorter than the whole series of accesses.

exd_UserData The data provided by MAPTAG_USERDATA or MAPTAG_BLOCKID
for invalid, or swapped pages, as defined by SetProperties() or SetPageProperties(). This
will be NULL in case no user data is available.

exd_NextUserData In case of a misaligned access, the user data of the second page that was
involved in the exception. If the access was aligned, this is identical to exd_UserData.

exd_Data If the access was a write access and the EXDF_WRITEDATAUNKNOWN flag in
the exd_Flags field is cleared, then this long word will contain the data the CPU tried to write
out. You’ve to ask the library to provide this data, hence to keep this bit cleared by selecting
the MAPP_REPAIRABLE property flag. If you do not set MAPP_REPAIRABLE,
you might get data in some situations on some CPUs, but nothing is ensured.

The data is right-justified in this field, i.e. bytes will use bits 7 . . . 0, words will use bits 15 . . . 0
and long word accesses will use the complete field. The library does not provide meaningful
write data for double, extended, movem or move16 accesses. Especially, you may see
movem faults as a series of long word or word writes on some CPUs, while this instruction is
atomic and reported as one big access on other CPUs. In either case, you may not be able to
access the individual data units written out.

This data should be used only for debugging purposes and “Enforcer like” applications, or for
applications where you can guarantee that movems do not occur, e.g. the emulation of virtual
I/O interface circuits by the MMU where data registers of the virtual I/O chip cause an MMU
exception that is then handled in software.

In case you want to allow the CPU to continue execution without retrying a write access, for
example because you either managed to complete the write yourself or you want to ignore the
access, set the EXDF_WRITECOMPLETE bit of the flags field below.

In case you do not set this bit, the CPU will attempt to re-run the faulty instruction. In
case you haven’t been able to repair the fault using some other technique, as for example by
swapping in the faulty page, your exception handler will be called again.

In case of a read fault, you may place the data to be read back in the very same field and
set the EXDF_READBACK flag in the flags value below. The MMU library will then
attempt to place this value in the input pipeline of the CPU and to repair the faulty access
by providing the supplied data. The data has to be placed right-justified in this field again,
and the MAPP_REPAIRABLE bit of the page must have been set to allow this trick.

Certain restrictions arise, again: First, a movem might show up as several exceptions, hence
you might be able to provide data for each register loaded, or it might show up as one single
exception. In this case, all registers will be loaded with the same value.

Faults due to the CPU attempting to read an instruction instead of data cannot be repaired;
you will not be able to fill the instruction pipeline of the CPU. The only way of handling
this fault is to provide a spare page or to alter the PC. Do not attempt to fill the instruction
pipeline, the MuLib will call the Exec exception handler directly in case you try to.

exd_ReturnPC The program counter of the instruction that caused the fault. This is only an
approximate value due to the instruction pre-fetch feature of all CPUs of the 680x0 family.
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In case a branch was performed after the faulty instruction was loaded, and before it was
detected, this PC might be completely useless because program flow after detection of the
exception might have taken the branch, causing the PC to be in a completely different part of
the program. There’s nothing that can be done about it. However, the program is guaranteed
to continue “at the right place”.

In case you set the EXDF_CALL flag, this field contains the address of a function that will
be called in user mode, in the Context of the Task that caused the exception, provided the
faulting code was running in user mode as well. For faults in supervisor space, this functionality
is not available. See below for details how to use this feature.

exd_Flags A combined input/output flags long word. The following flags will be set by the MuLib
and can be tested in the exception handler:

EXDF_WRITE a write fault if set. If reset, a read fault.

EXDF_INSTRUCTION a fault on fetching an instruction. As a special case, this could be
a write fault if someone tried to write out instruction data with moves and an instruction
space function code in dfc. Such accesses are currently unsupported by the library.

EXDF_WRITEPROTECTED a fault due to write protection of the destination.

EXDF_SUPERVISOR a fault due to supervisor only protection of the source or destina-
tion.

EXDF_WRITEDATAUNKNOWN the write data was lost, exd_Data is invalid in
this case. This might happen in case a write access hit a non-MAPP_REPAIRABLE
page.

EXDF_MISALIGNED The access was misaligned, i.e. more than one page was involved
in the access. Prepare to swap in more than one page, for example. If this bit is set,
exd_FaultAddress and exd_NextFaultAddress should be investigated to find the
pages that must be repaired. Otherwise, the two pointers are identical.

The following flags can be set by your code and instruct the library how to handle the exception:

EXDF_READBACK abort a faulty read and provide the exd_Data word as input for
the CPU. Do not try to rerun the access. This requires a lot of trickery for certain
configurations and is not fast at all.

EXDF_WRITECOMPLETE abort a faulty write, and do not try to rerun it. This means
that your code somehow managed to complete the write cycle, or that your handler found
that it is no longer necessary to complete the cycle. MuForce, for example, sets this flag
after having generated the debug output to let the faulty program continue. Otherwise,
the write will be retried, potentially creating the same fault again.

EXDF_CALL call a routine whose address is in exd_ReturnPC. The procedure will be
called in user mode as part of the faulty Task and its Context, as a “subroutine” of the
MuLib code, all provided the faulting program was executing in user mode.

This feature is not available for supervisor code, i.e. in the supervisor Context. The
MuLib will cause a “guru” in case you try.

The called user code should try to repair the access. It has access to all registers of the
faulty program, and must therefore preserve all registers unless it attempts to alter them
“on purpose”. The exception data structure is no longer available if your code has been
called. In case you need it, you have to make a backup in the exception handler to a
private memory region, and use this backup in your user routine.

In case your code attempts to halt the faulting Task by a Wait(), no attempt is made
to detect whether this call is critical. In particular, if the faulting task disabled task
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switching by Forbid(), running into a Wait() in the user function will break this state,
with potentially harmful side effects.

Alternatively, you may use the “message hook” mechanism of the MuLib which dispatches
an Exec-style Message itself and releases you from the burden of implementing the de-
tails. Message hooks simplify handling segmentation faults considerably and should be
preferred when possible.

The user routine in EXDF_CALL finally return with an RTS to the library code
to complete exception handling. Note that the stacked PC points to some code in the
library, not to the faulty code itself. Do not attempt to use the return address as an
indicator of the source of the exception.

Additional library internal flags may appear in exd_Flags. Do not attempt to interpret or
set them.

exd_Properties The property flags of the page that was responsible for the fault.

exd_NextProperties In case of a misaligned access, the flags of the second page involved in the
access. For non-misaligned accesses, this is identical to exd_Properties.

exd_internal Leave this alone, it’s for internal use of the library.

exd_FunctionCode The function code of the access. The following values are defined for user
Contexts:

1 User data access

2 User code access

. . . and the following for Supervisor Contexts:

5 Supervisor data access

6 Supervisor code access

All remaining function codes relate to physical bus errors and will not reach your context
hook.

exd_Level The level of the MMU tree at which the access fault happened and at which the MMU
descriptor resides. This need not to be the “page level”, e.g. for early termination descriptors
or invalid descriptors at a higher level. Experts should note that this is not even guaranteed
for the 040 or 060. Furthermore, in case of an indirect descriptor, this is the level of the pointer
pointing to the final page descriptor, not the level of the real page descriptor.

The level is an advanced information you usually should not care about. Level A of the MMU
tree is encoded as “0”, level B as “1” and so on. Note that this numbering is different from
the MC680x0 internal counting which encodes level A as “1”.

exd_NextLevel In case of a misaligned access, the level of the second descriptor involved in the
fault.

exd_DataRegs A copy of the data registers at the time the fault happened. These images are
copied back as soon as the exception terminates.

exd_AddrRegs A copy of the address registers, but without the stack pointer.

exd_SSP The supervisor stack pointer. This points directly to the processor specific exception
stack frame. The first UWORD of this stack frame is the copy of the status register at the
time of the fault. Be warned! Everything else is processor specific, the MuLib might also want
to modify this exception stack frame, so hands off!
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exd_USP The user stack pointer. Some higher magic could even replace temporarily the USP
in the exception handler and run a user routine with a private stack, for example to handle
automatic stack enlargement. The MuLib handler will restore the correct USP from this field
as soon as it returns.

exd_SysBase A pointer to the library base of the exec.library. Do not access AbsExecBase
within the exception handler, use either a private copy or this pointer. Not following this rule
might be fatal.

exd_MMUBase A pointer to the library base of the mmu.library, also found in register a6.

In case you’re going to write an automatic stack extension program, you should keep in mind that
the EXDF_CALL mechanism requires about 300 bytes of user stack space. Similar, task switching
takes some user stack, too. To be able to swap in stack in case of a stack overflow, you need to
provide an alternative user stack, for example by setting the USP to a temporary pre-allocated
stack. The library “message hooks” discussed below will handle this automatically and are therefore
“safe” for handling this situation.

There are unfortunately a number of “features” of each CPU which should not go unmentioned:

The 68020/68851 and 68030 Execution of instructions in an access-protected “zero page” is
really, really slow. Please keep this in mind! Furthermore, moves to instruction space is
unsupported. This goes for all other CPUs as well.

FPU related access faults are a dark chapter in exception handling. Of a faulty fmove, only
the first two long words are checked by the 68030 and therefore at most two hits get reported,
all others go unnoticed and will cause a second exception if the instruction is re-run. Of a
faulty fmovem, only the first two long words hits get reported, too. The CPU might ignore
all other hits and continue execution. This means specifically that a debugging tool might not
be able to see all hits that happened on these instructions, and you will not be able to capture
them for private use. VM systems shouldn’t have much problems with this, though, since the
invalid page should have been swapped in and each access can hit at most two pages at once
if it is misaligned. However, you must be prepared that the mmu.library will not be able to
set the EXDF_MISALIGNED flag correctly in this case. The instruction handler will be
called again, though, in case the first hit did not swap in an adjacent page which was hit by
the third or later long word.

The 68040 Repairing a movem write accesses is not always possible, and certain movems cannot
continued safely. In case a movem read or write goes to an invalid page other than at level
2 or 3, the MuLib has to abort the movem. It will not “guru”, though, but you will not be
able to get the data that was supposed to be written out. To avoid this situation in case you
really need the movem data, set the MAPP_REPAIRABLE property flag since this will
put all descriptors at page level.

Movems to a register included in the register list itself might not to be rerun safely in all
circumstances. Avoid them. Read-back data is only available for all destination registers at
once, you cannot specify individual target register values.

FPU related access errors cause even more problems than on the 68030. If a fmove or fmovem
moves more than two long words, for example a fmove.x or any fmovem, the processor will
only notice the first access of a faulty page. If the instruction would catch more than one
hit, the processor restarts the instruction completely from the beginning. This means for
debugging tools that you will not be able to fix a faulty instruction of this kind at all by just
swapping in a single page at once, the processor would loop forever. The MuLib “fixes” this
for MAPP_REPAIRABLE pages by replacing all invalid pages by blank dummy pages at
once. Note that even disassembling the instruction at the PC would not help here because the
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PC might point to an FPU instruction even if the hit was caused by the instruction before.
Hence, the following two instructions

move.l d0,(a3)

fmovem.x fp0,(a3)

with a3 pointing to an invalid page, will both invoke the exception handler with the same PC
value, namely the address of the fmovem. This is the “fault” of the write-back pipeline of
the 68040.

This might be a problem for VMM systems as well: Because there is no single flag that tells
whether the hit was caused by an FPU instruction or not, the processor might re-run a FPU
instruction as mentioned above again, possibly accessing the two different pages. If the VMM
system would have swapped in the second page by the first hit, and removed the first page
accessed by this instruction from memory, re-running this instruction will cause another VMM
hit, this time from the first page. It is therefore important that a VMM system must not swap
out a page previously swapped in. At least two adjacent pages must be available at once to
avoid this race conditions.

The 68040 has one additional user instruction, move16. Due to the tricky nature of this
instruction, the library might not be able to handle it correctly in all circumstances. As
for movems, individual pipeline access to the data written out or to read-back data is not
available. In particular, repairing a move16 access may cause double writes, with may cause
side effects if the target address resides in an I/O hardware register. The MuLib cannot avoid
such writes in all circumstances. Since the Amiga hardware does not support move16 correctly
anyhow — since this instruction causes a “burst access” even to non-cacheable memory — it
is highly “recommanded” not to use it at all.

The 68060 The library handles branch cache flushes transparently, no need to worry about them.
So much for the good news.

Written data is usually not available unless the library emulates this with some heavy trick-
ery and is told to do so with the MAPP_REPAIRABLE flag. Things are getting even
worse if no exception handler wants to make use of the write-back data and returns with the
EXDF_WRITECOMPLETE flag cleared. In this case, the MuLib tries to rerun the faulty
instruction again, even though it has been already executed a first time. It tries to rebuild all
the registers except for the FPU registers, the supervisor model and the SSP and then returns
to the PC of the faulty instruction. Avoid this situation as it causes a lot of overhead. Es-
pecially, you need not and should not specify MAPP_REPAIRABLE for virtual memory
applications as it slows down handling paging faults considerably.

Except that, all 68040 restrictions regarding movems or move16 apply here again, see above.

In case of a non-locked read-modify-write access, as for example a

addq.l #1,(a0)

the library will call the context hooks twice, once with the read data, and then again with the
write data. This is an emulation service to guarantee consistency amongst all members of the
MC68K family.

More problems arise for misaligned RMW accesses of which one access is valid and the other
is not. The 060 manual states that these accesses cannot be rerun safely because parts of the
data might have been written back already, and rerunning the instruction might cause this
wrong data to be re-used again. Fortunately, this problem seems to arise for true physical
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bus errors only, and it is not in the purpose of the MuLib to manage them anyhow. They are
currently handed through to the exec handler, but see also the SetBusError() function.

As for all other members of the MC68K family, FPU accesses are somewhat critical. This is
even worse for the FPU instructions that have to be emulated in software. Unlike the 68040,
the 68060 does not pre-fetch the full instruction before running the emulation exception,
which means for you that some exceptions might show up in the FPU emulation core, as
supervisor mode exceptions, in the 68060 library. It is the job of this library to handle them
properly, and to emulate a user mode exception, for example to swap in the full instruction
before proceeding. The original Motorola FPSP code handled this correctly, but this code
has been “optimized” unfortunately by various, if not all vendors of 68060.libraries such that,
except for the 68060.library in the mmu.library distribution archive, there is currently no other
68060.library that supports virtual memory correctly.

8.2 Page Access Handlers

The purpose of the page access handler is to notify programs that operate on the low-level side of
the MMU programming — namely by SetPageProperties() or GetPageProperties() — if the
high-level functions RebuildTree() resp. RebuildTrees() try to access or overwrite their setup.
It provides a method to modify the MMU tree on the low level transparently to the high level
functions. Thus, the low-level program will be able to protect its setup from getting overwritten
by a high-level function. Unlike the “segmentation fault” handlers, the page access handler is not a
true hardware exception, though the calling rules and restrictions are identical. It is setup by

struct MMUContext *ctx;

struct ExceptionHook *hk;

hk = AddContextHook(MADTAG_CONTEXT,ctx,

MADTAG_TYPE,MMUEH_PAGEACCESS,...);

similar to all other exception handlers.
The page access handler is called whenever RebuildTree() re-installs a MMU page descriptor

with the MAPP_SINGLEPAGE property flag set. Your handler can then override the modifi-
cation. Note, however, that the high-level MMU setup will not reflect this modification.

A typical application of this feature is the “MuGuardianAngel” type program: The idea is here
to mark “free” memory as MAPP_INVALID to be able to detect illegal memory accesses. Since
an AllocMem() has to mark the memory valid it allocated, the MMU tables have to be adjusted
for each allocation. Similarly, released memory has to be made unavailable on a FreeMem(). On
the other hand, AllocMem() and FreeMem() are not allowed to break a Forbid() and are hence
not able to call the high-level functions — which might do so. They therefore have to use the low
level SetPageProperties(). Since the low level functions do not inform the higher level about
the modification, a program adjusting the MMU descriptor with the high-level functions will revert
the modifications made by SetPageProperties() before. The solution is here to install a page
access handler that checks whether the higher level is going to re-install one of the modified page
descriptors, to intercept here and to set the MAPP_INVALID flag correctly.

The page access handler could either try to generate the new page data itself, for example by
using its own database or by investigating system structures; the MuGuardianAngle Page Access
Handler scans, for example, the Exec memory lists to find out whether the memory page is “free”
or not, and hence to decide whether it should or should not invalidate the page. Alternatively, it
is also permissible to call GetPageProperties() to read the old property flags that have been
installed before and that are about to be overwritten. In both cases, though, you should be careful
to modify only the flags your program really requires or the resulting page layout might be unusable
and unexpected to the application that triggered the high-level page rebuild.
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Your handler is called with the page access data structure, documented below, in register a0,
with the provided user data from MADTAD_DATA in a1 and a4 and the library pointer in a6.
The calling rules are therefore identical to those of all other exception handlers. Registers d0-
d1/a0-a1/a4-a5 are scratch registers, a6 is not. In case your handler returns with the Z flag set,
the library aborts calling other handlers of lower priority, otherwise, additional handlers of lower
priority are called. This is for example desirable if the page to be modified is not one of the pages
your handler keeps care of.

Remember that your code is called from supervisor mode with all interrupts disabled, as for all
other exception handlers. Your code should better be fast, especially if a lot of descriptors have to
be rebuild.

Here’s the PageAccessData structure:

struct PageAccessData {

ULONG pgad_Level;

void *pgad_Address;

ULONG *pgad_Destination;

struct MMUContext *pgad_Context;

struct MMUBase *pgad_MMUBase;

ULONG pgad_Properties;

ULONG pgad_UserData;

};

The meaning of the fields in this structure is as follows:

pgad_Level The level at which the MMU descriptor has to be build. This is zero for level A, one
for level B and so on. Note that this numbering is different from the internal MC68K scheme
which counts level A as one. Since this handler is only called for MAPP_SINGLEPAGE
descriptors, this will always be the page level of the MMU tree.

pgad_Address The logical address the descriptor to be build will handle. Hence, this gives the
address that is to be translated or mapped. This field can be tested by the handler to determine
whether a modification is necessary or desirable.

pgad_Destination The address the true hardware descriptor will be written to. There’s little
reason to make use of this entry. Especially, it might not yet be initialized when your code is
run, and will be filled in after your code has run.

pgad_Context The Context the MMU tree being rebuild belongs to. This is the Context you
installed the page access handler in. Unlike for MMUEH_SEGFAULT handlers, there is
no global handler list, only Context specific handlers are available.

pgad_MMUBase The library base address.

pgad_Properties The page properties, defined in mmu/context.h. This defines which kind of
hardware descriptor the library is about to build. In case you want to alter the settings, you
need to place the desired new properties of the page here.

pgad_UserData This field will be used if one of the property flags MAPP_SWAPPED or
MAPP_INVALID, MAPP_REMAPPED and MAPP_BUNDLED or, last but not
least, MAPP_INDIRECT are set within the above field. In specific, if you enable one
of these flags, this secondary data can — or even must be — provided. This field contains
property specific information like the block ID for MAPP_SWAPPED, the user data for
MAPP_INVALID pages, the physical destination for MAPP_REMAPPED and the
physical page address for MAPP_BUNDLED pages, and finally the destination descriptor
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for MAPP_INDIRECT pages. It is not available if the MAPP_REPAIRABLE bit is
set.

In case you modify the properties, you possibly need to correct this field, too.

8.3 Switch and Launch Handlers

Since the tc_Switch() and tc_Launch() fields of the Exec Task structure are no longer available
if a Task entered a Context explicitly by means of EnterMMUContext(), the MuLib has to offer
replacement functions. They are, additionally, more flexible than the Exec function pointers since
more than one handler can be installed at a time. Very much like the page access exception, these
exceptions are not caused by hardware exceptions, but are called as soon as a Task looses the CPU
— for MMUEH_SWITCH — or gains the CPU — for MMUEH_LAUNCH. Since both
exceptions require that the MuLib specific switch and launch vectors have been installed in the Task
structure itself, your Task has to enter an MMU Context explicitly to make this feature available:

struct MMUContext *ctx;

struct Task *task;

task = FindTask(NULL);

ctx = CurrentContext(task);

if (EnterMMUContext(ctx,task)) {

/* everything is fine */

}

This will attach the current task explicitly to the public Context if it hasn’t been attached to a
Context before. Additionally, the Task must be removed from this Context before it quits. For this,
call

LeaveMMUContext(FindTask(NULL));

/* and say goodbye! */

}

before running into the final RTS. As for all exceptions, the AddContextHook() function will
install a new exception handler, but this time the MADTAG_TASK tag item must be supplied
since swap and launch handlers are intrinsically task specific:

struct Task *task;

struct ExceptionHook *hk;

hk = AddContextHook(MADTAG_TASK,task,

MADTAG_TYPE,MMUEH_SWITCH,...);

Finally, the hook must be activated by ActivateException(). The MMUEH_SWITCH hook
will be called in supervisor code, immediately before your task looses the CPU. The task specific user
and supervisor Contexts will still be active, though. The MMUEH_LAUNCH handler will be
called right before your task will gain the CPU, with the MMU setup for this task already installed.
Calling rules and register usage are as above, and as for all exception hooks.

8.4 Message Hooks

Even though the MuLib exception hooks are very powerful, they are a bit cumbersome to use,
especially from high-level languages. Therefore, the MuLib offers for the MMUEH_SWAPPED
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and MMUEH_SEGFAULT exceptions an additional software wrapper which makes exception
handling much easier. This wrapper is build on top of the AddContextHook() functions, and was
designed with “virtual memory management” applications in mind: On installation, you specify a
Context and a message port. Then activate the exception. As soon as the MMU detects a page fault,
a message will be sent to the provided port, and the faulty task will be halted. Your application
has then the chance to fix this problem, for example by swapping in the missing page. As soon as
you reply to the message, the faulted instruction will be re-run.

However, for this mechanism a task switch must be performed. This, however, creates a conflict
if the faulting task called Forbid() or Disable() to indicate that such switches are currently not
desirable. If so, the message hooks will reject to accept any faults, and the fault will then be delivered
to the handlers of the next lower priority. If no other handler is available, it will be forwarded to
Exec, which in turn would “guru”. This is not a restriction of the MuLib, but due to the very design
of the Exec kernel.

Message hooks require that the tasks whose faults are about to be handled are attached to a
Context, thus message hooks will not work automatically for all public Tasks. Message hooks will
reject to handle exceptions from Tasks that have not been attached to any Context, even though
these Tasks use the MMU setup of the public Context. The following code would, for example,
attach the current Task to the public Context, and hence would allow to handle exceptions of the
current Task by means of message hooks:

struct MMUContext *ctx;

struct Task *task;

task = FindTask(NULL);

ctx = CurrentContext(task);

if (EnterMMUContext(ctx,task)) {

/* everything is fine */

}

Again, LeaveMMUContext() needs to be called before the task terminates.

Message hooks are installed and initialized by

struct MMUContext *ctx;

struct MsgPort *port;

struct ExceptionHook *hk;

hk = AddMessageHook(MADTAG_CONTEXT,ctx,

MADTAG_CATCHERPORT,port,

MADTAG_TYPE,...,TAG_DONE);

The available tag items are defined in mmu/mmutags.h and are identical to those of the low-level Ad-
dContextHook() call, except that MADTAG_USERDATA is not available and a destination
port for the exception message must be provided by MADTAG_CATCHERPORT. Especially,
the following tags are available:

MADTAG_CONTEXT The context to which this exception hook should be added. This tag
item must be present.

MADTAG_TASK If the hook should be called only if a specific task is running, specify a pointer
to the task structure here. Remember that more than one task can be attached to a Context.
Be warned, though! Adding too many task specific hooks slows down exception handling
considerably.
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MADTAG_TYPE The type of the exceptions this hook should handle. Currently, only page
faults MMUEH_SWAPPED and segmentation faults MMUEH_SEGFAULT can be
handled by means of message hooks.

MADTAG_CATCHERPORT The port to sent the exception message to. Must point to an
initialized exec MsgPort structure. This tag item is mandatory, or the function call will fail.

MADTAG_NAME A name for the hook. This name is initialized, but the library makes no use
of it. Since the structure of the exception hook is undocumented, there is currently no way of
using this name from the outside as well.

MADTAG_PRI A priority, ranging from −128 . . . + 127. This defines a relative order of the
message hook compared to all other exception hooks attached to the same context and task.
Higher priority handlers are called first.

Then, as for all other exceptions, the message hook must be activated by calling

struct ExceptionHook *hk;

ActivateException(hk);

If the handled task generates an exception, the following message will be sent to the MAD-
TAG_CATCHERPORT port, documented in mmu/exceptions.h:

struct ExceptionMessage {

struct Message exm_msg;

struct ExceptionData exm_Data;

};

The ExceptionData structure is documented above, it contains all the information required to
handle the exception. Once you reply to this message, the task that caused the exception will be
restarted and will re-run the access cycle.

To disable the exception, the following function should be used:

struct ExceptionHook *hk;

DeactivateException(hk);

This function, similar to ActivateException() is interrupt-callable and will not break a Forbid()
or a Disable(), hence is even available in critical situations.

For shutting down the hook completely, first reply to all exception messages that are still waiting
in the MADTAG_CATCHERPORT port. Then, finally, remove the hook by

struct ExceptionHook *hk;

RemMessageHook(hk);

The following code segment demonstrates this:

struct ExceptionHook *hk;

struct MsgPort *exceptionport;

struct Message *msg;

DeactivateException(hk);

while(msg=GetMsg(exceptionport))

ReplyMsg(msg);

RemMessageHook(hk);

Note the order of the calls, first disable the hook, then reply to the messages left on the port, then
remove the hook.
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8.5 Function Reference

To complete this chapter, we give an overview about the exception handling related functions in the
MuLib:

Table 6: Exception Control Functions

MuLib function Description

AddContextHook() Allocate and install an exception hook
RemContextHook() Unlink and release an exception hook
AddMessageHook() Allocate and install a high level hook
RemMessageHook() Unlink and release a high level hook
ActivateException() Enable an exception hook
DeactivateException() Disable an exception hook
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9 Building and Adjusting Contexts

The MuLib allows to build several MMU configurations — the Contexts — at once, and to load
and unload them automatically as soon as the Tasks attached to these Contexts gain or loose the
CPU, as explained in section 2.2. After loading the MuLib, only two Contexts are available: The
public Context, and its supervisor Context. Additional private Contexts can be build on demand,
though. Tasks attached to these Contexts will somehow “detach” from the remaining system as
they operate in their private address space. Such private Contexts can share certain properties of
the public Context by the mechanisms indicated in section 4.4, or can detach completely from the
settings of the rest of the system.

9.1 Creating a New Context

The following MuLib call will build a new Context; unless you specify some tags to proceed otherwise,
the function will create a completely blank context with no valid logical addresses at all. Hence, you
most likely want to specify tag items to duplicate the public Context and use it as a starting point
for further modifications:

struct MMUContext *ctx;

ctx = CreateMMUContext(...,TAG_DONE);

As some other MuLib functions, it is completely tag-based. After the Context has been build, it is
ready to accept Tasks for attachment.

The following tags can be passed in, defined in mmu/mmutags.h:

MCXTAG_COPY build a copy of the Context passed in as tag data. If this pointer is NULL,
build a copy of the public user Context. This is highly recommended since if this tag item is
not given, all context addresses will be marked as MAPP_BLANK. Most likely not what
you want.

If you specify a different page size than that of the context you want to copy, you should
specify the MCXTAG_ERRORCODE as well and check the return code carefully. The
MuLib might have performed some rounding to fit the old table specifications into the new
table layout. In worst case, this might make your new table unusable. It is therefore in general
not a good idea to specify a page size larger than that of the cloned Context, or even to select
a different table size at all. Even though the library itself, and all the MuTools allocate all its
internal structures aligned to “worst case” page sizes, this might not be true for external user
programs.

MCXTAG_SHARE mutually exclusive to the above, share the properties from a parent context
which is passed in as tag data. If this pointer is NULL, share the properties from the public
user Context. Context sharing is recommended whenever your new Context shall not dispatch
from the remaining system completely, as changes in the parent (shared) context are handed
through to the pages marked as MAPP_SHARED in your child context. If this tag is
present, all pages of the child context are marked as MAPP_SHARED and hence will get
the same properties as the shared parent context.

The main difference between MCXTAG_COPY and MCXTAG_SHARE is that the
former makes only a copy of the parent at creation time, but leaves the child untouched if the
parent changes, whereas the latter forwards changes of the parent to the child.

MCXTAG_SHARE imposes some restrictions, though. Child Contexts build by means of
this tag item must use the same table layout, especially the same page size than the parent,
and must not use a private supervisor context.
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MCXTAG_EXECBASE allow accesses of AbsExecBase and of valid chip memory within the
first page, even if the first page is marked as MAPP_INVALID. This is an important feature
if the MuLib is used by debugging tools like “MuForce”. These accesses will be emulated in
software and are hence slow. They should be avoided for that reason. Os 3.0 and up takes this
into account already and starts the chip memory pool at a higher address, but on all lower Os
releases a tool like “MuMove4K” should be run.

AbsExecBase accesses are handled with highest priority first and might be faster, even
faster than with the original “Enforcer”. They are still slower than the real thing. It is not
guaranteed that the library will really read AbsExecBase from the address 4.w, depending
on some internals, it might give you a cached copy instead. This will usually do only good.

This option defaults to TRUE, and can be changed later on with SetMMUContextData().

MCXTAG_BLANKFILL defines a ULONG fill value for blank memory regions.

This ULONG is read by the CPU in case a program tries to access MAPP_BLANK It
defaults to 0L, but other values might be useful for debugging. MuForce, for example, can
be asked to install here some nastier values. The value can also be adjusted later on by
SetMMUContextData().

MCXTAG_MEMORYATTRS Exec memory attributes as defined in exec/memory.h. This
memory attribute is used when allocating memory for the hardware MMU tables. This defaults
to MEMF_PUBLIC, but can be set to other values for special purposes.

MCXTAG_PRIVATESUPER A boolean value, either TRUE or FALSE. If TRUE, the
MuLib will build a private supervisor Context for your user Context as well, which is in-
dependent, but a copy of the public supervisor Context. This means specifically that possible
modifications of the public supervisor Context will not be carried over to your private super-
visor Context. The default is FALSE. Note that this feature is not available for Contexts
sharing the mapping of the public context.

Even if you pass in FALSE here, the library might still ignore your choice and might decide to
build a private supervisor Context anyways. This happens if the table layout you’ve chosen is
different to the default table layout, making the user tree incompatible to the default supervisor
tree.

MCXTAG_ZEROBASE This option has only an effect if MCXTAG_EXECBASE is TRUE
and the first page of the MMU table is marked as MAPP_INVALID; hence, if the MuLib
has to emulate accesses into the first page.

This tag provides a base address which will be used as physical address for the software
emulation. It defaults to 0L meaning that the MuLib will emulate accesses into the true zero
page. This is important if the zero page gets remapped to a different location in a first step,
and an Enforcer type program disabling the access to the zero page is run later on. The MuLib
must, in this case, know that it should emulate the accesses into the remapped copy of the
zero page instead.

The zero page remapper should specify this tag to redirect accesses transparently, even if an
Enforcer type application invalidates the zero page. Failing to do so would make the MuLib
emulating the access to the incorrect, non-remapped memory location. Since other programs
might want to build a private MMU table with a different table size, it is not enough to
align the remap destination of the zero page to GetPageSize() boundaries, RemapSize()
alignment is required! Due to the tricky nature of memory remapping, this is clearly an
advanced feature. With SetMMUContextData(), the base address of the zero page access
emulation can be changed later.
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MCXTAG_SHAREABLE If set to TRUE, make this context public and allow child contexts
to share parts of the table layout of this context. Note that this imposes some restrictions on
your context, as it must use the global supervisor context and hence must use the same table
layout as the default context. Furthermore, a DeleteMMUContext() may fail if you try to
delete your context while some children still share the table layout.

MCXTAG_SHUTDOWNTASK This tag points to the task structure the MuLib shall sent a
signal to as soon as the context is no longer in use and may be disposed. This happens either
if the last child detaches from a public context or the last task attached to this context leaves
it by means of LeaveMMUContext(). You may then try to call DeleteMMUContext()
again to shutdown your context. Defaults to NULL, i.e. no task will be informed. The
shutdown task can be changed any time by SetMMUContextData().

MCXTAG_SHUTDOWNMASK defines the signal mask (not a signal bit!) that shall be sent
to the MCXTAG_SHUTDOWNTASK as soon as the last child context or the last child
task of this context gets removed. Defaults to NULL, i.e. no signal will be sent. Again, also
adjustable by SetMMUContextData().

MCXTAG_DISCACHEDES A boolean tag item. If set to TRUE, the memory that keeps the
descriptors is cache-inhibited. This works around some problems that appear if a program
attempts to hack on the MMU tables itself. Note that this is definitely illegal and unsupported
anyways, the MuLib code has no problems with descriptors in cacheable memory. Note,
however, that the descriptors will be only non-cacheable “as seen” from the Context itself. It
will not change the cache mode as seen from other Contexts, even from the supervisor Context
of the Context passed in.

This means that reading user descriptors from user code will not be cached, and supervisor
code reading supervisor descriptors will not fill the cache either, but user code reading the
supervisor tables or supervisor code reading the user tables will enter the cache as before. I
will not try to improve this compatibility hack further!

Defaults to FALSE, but the setting for the public user and supervisor Context can be adjusted
by means of

DescriptorCacheInhibit ON

in the ENVARC:MMU-Configuration file.

MCXTAG_LOWMEMORYLIMIT Defines a address threshold within the zero page; accesses
to addresses to addresses higher or equal than this threshold will be emulated in software.
This is mainly for 68060/68040 support under Os V37 and V38 where chip memory starts
at 0x400 inside the zero page. The MuLib checks the chip memory base address on startup
and provides this as default value. This threshold can also be adjusted after creation of the
context with SetMMUContextData().

MCXTAG_ERRORCODE Defines a pointer to a ULONG the MuLib will fill with an error or
warning code. It will be set to 0L in case the operation succeeds. The following error codes
are defined in mmu/context.h:

CCERR_NO_FREE_STORE The operation failed due to lack of memory.

CCERR_INVALID_PARAMETERS The parameters specified by the tags are invalid
or out of range.
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CCERR_UNSUPPORTED The parameters are valid, but not supported by the hardware
the program currently runs on. This error code will be set, too, if you try to build a
sharing child context that uses a MMU table layout different than the parent, or requires
a private supervisor context.

CCERR_TRIMMED The library performed some minor adjustments on the MMU table
passed in for cloning. The cache modes might not be optimal due to some roundings that
have to be performed, but the MMU table should work in general.

This is not an error, building the Context succeeded.

CCERR_UNALIGNED The library had to perform heavy rounding in the MMU table
passed in, it might be unusable. For example, remapped pages were misaligned and due
to the rounding accesses might go to wrong locations. If you get this return code, you
should possibly deallocate the new Context and inform the user that the request could
not be satisfied.

Still, this is not an error. The function will return a new Context, but possibly an
unusable one.

CCERR_SHARENCOPY You tried to use the mutually exclusive context creation tags
MCXTAG_SHARE and MCXTAG_COPY simultaneously, which is unsupported.
This is a true error condition, and no new Context will be build.

CCERR_NOTSHAREABLE You tried to share a context with MCXTAG_SHARE
that is not shareable. Suitable contexts for sharing must be built with the MCX-
TAG_SHAREABLE attribute set to TRUE.

CCERR_SHAREOVERLEVELS You tried to make a sharing child context shareable,
or tried to share a context that is itself a child. The current release of the MuLib does
not support sharing amongst several generations of contexts.

CCERR_NOPRIVSUPER You tried to build a shared context with a private supervisor
context, or that would require a private supervisor context because the MMU table layout
is different than the default context. For the current release of the mmu.library, sharing
contexts must use the public supervisor context as their own supervisor context, though.

The next tag items define the MMU table layout. A logical address, as seen as input by the
MMU, consists of exactly 32 bits. These bits are split from the left to the right into groups, defining
a “path” in the MMU tree. Each “level” of the MMU tree can be considered as an array of pointers,
pointing to the next lower level of the tree. The nodes of the tree contain the descriptors that define
how the address on the path is translated by the MMU. For example, consider a three level tree with
7 bits for level A and B, 6 bits for level C and 12 bits for the “page level”. The address 0x01feabcd

would be used like this to find a descriptor:

0x01feabcd =

7
︷ ︸︸ ︷

0000 000
︸ ︷︷ ︸

A

7
︷ ︸︸ ︷

1 1111 11
︸ ︷︷ ︸

B

6
︷ ︸︸ ︷

10 1010
︸ ︷︷ ︸

C

12
︷ ︸︸ ︷

1011 1100 1101
︸ ︷︷ ︸

D

The index into level A of the MMU tree is 0, hence the first pointer is read. The MMU obtains now
another array of pointers, called the level B.

The index into level B is, as we see above, 127. The MMU uses now the 127th entry of the table
at level B to obtain a pointer to the level C table.

The index into level C is here 101010, binary for 42. Hence, the 42th pointer of the level C table
will be used, pointing to the page in memory and defining the base address for the next step.

The page offset, indicated by D is 1011 1100 1101 in this example, or short 0xbcd in hex notation.
This number is added to the base address obtained from the descriptor in level C. If the address is
not “re-mapped”, the base address would be identically to the first 32 − 12 = 20 bits of the physical
address.

Building and Adjusting Contexts 61



Generic Page Formats are Cheaper. Except for special applications, it is usually not a
good idea to build a Context with a MMU table organization that is different from the
default layout setup by the MuLib. If you build a new Context which does not use
the same page organization as the public Context, the MuLib has to build a private
supervisor Context for you. Moreover, task switches between tasks using different table
layouts are considerably slower because the MuLib has to load more MMU registers, and
has to flush the CPU caches. The overhead is usually not worth the effort. Note further
that custom MMU table layouts are not available for contexts that want to use context
sharing.

Nevertheless, what follows are the tag items defining the table layout. The first group of tag
items specify the number of bits to be used for each level of the MMU tree. They must sum up
to 32, for reasons explained above. You need not to specify all of them, the MuLib will calculate
reasonable defaults if you do not.

MCXTAG_DEPTH The depth of the MMU tree to build. Defaults to the depth of the public
Context. In the example above, the depth is three, which is also the depth used by the MuLib
on startup.

Legal values range from 1 . . . 4 for the 68020/68851 and the 68030, but the 68040 and 68060
support only one value, namely 3.

MCXTAG_LEVELABITS The number of bits of the logical address that make up the level A

of the MMU tree. 2bits is the number of entries in this level of the tree.

The 68020/68851 and the 68030 support here values from 1 . . . 15, the only legal value for the
68040 and 68060 is 7.

The MuLib will pick a reasonable and system dependent default for you if you don’t specify
this tag item.

MCXTAG_LEVELBBITS The number of bits for the level B of the MMU tree, unused if the
depth is smaller than two.

Legal values are 1 to 15 for the 68851 and the 68030, and 7 as only possible value for the 68040
and 68060.

MCXTAG_LEVELCBITS The number of bits of the level C of the MMU tree, unused if the
depth is smaller than three.

Arguments may range from 1 . . . 15 for the 68851 and 68030, and must be either 5 or 6 for the
68040 and 68060.

MCXTAG_LEVELDBITS The number of bits in the level D of the MMU tree, only used if the
depth is four and therefore unused on the 68040 and 68060; must range from 1 . . . 15.

MCXTAG_PAGEBITS The number of bits to be used from the logical address as the page
offset, therefore 2bits will be the page size.

Legal values are 8 . . . 15, giving 256 bytes up to 32K pages for the 68020/68851 and 68030, or
12 . . . 13 defining 4K resp. 8K pages for the 68040 and 68060.

The default is the page size of the public Context.

9.2 Disposing Contexts

Once a context is no longer used, and no further tasks are attached to it, you should delete it
again. This call will clean up the context, all temporary memory, the high-level MMU setup, and
the physical MMU table descriptors:
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struct MMUContext *ctx;

BOOL success;

success = DeleteMMUContext(ctx);

Note that this function returns a boolean success indicator1. It will fail if the context it shall
dispose is still in use, either because it is shared by child contexts, or because some tasks have
been attached to this context. In such circumstances, the MuLib will mark the context as pri-
vate, will disallow tasks to enter the context, and will not allow new children to share it, but the
context will still remain valid. You should therefore specify a signal mask and a task by means
of MCXTAG_SHUTDOWNMASK and MCXTAG_SHUTDOWNTASK on context cre-
ation. This signal mask will be sent as soon as the last child dispatches from your context; on arrival
of this signal, you may try again to dispose your context. Note that the shutdown signal will be
sent whenever the last child task or child context is gone, no matter whether you tried to shutdown
your context before or not.

9.3 Context Example Code

The following program gives an example how to build a new Context and how to attach a new task
to it:

/*************************************************

** MuContextTest **

** **

** Build a task with a private context **

** **

** (c) 1999-2000 THOR-Software **

** Version 1.03 19.03.2000 **

*************************************************/

/* Includes */

#include <exec/types.h>

#include <exec/memory.h>

#include <dos/dos.h>

#include <dos/dostags.h>

#include <dos/dosextens.h>

/* MMU specific includes */

#include <mmu/mmutags.h>

#include <mmu/context.h>

#include <proto/exec.h>

#include <proto/dos.h>

#include <proto/mmu.h>

#include <string.h>

/* Defines */

/* This is the location we will re-map accesses to. Should be

** available on all systems.

1It does since the very first release of the MuLib, check the includes!
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*/

#define TESTLOCATION 0x80000000

/* Protos */

long __saveds main(void);

void MMUTaskTest(void);

void RunTests(struct MMUContext *privctx,UBYTE *testpage,UBYTE *pother);

void Sync(struct MsgPort *destination,struct Message *msg);

void __saveds TestProc(void);

/* Statics */

/* Just the library bases we need */

char version[]="$VER: MuContextTest 1.03 (19.3.2000) (c) THOR";

struct MMUBase *MMUBase;

struct DosLibrary *DOSBase;

struct ExecBase *SysBase;

/* The main program */

long __saveds main(void)

{

long err,rc;

/* This program is able to compile without startup code, hence we have

to setup ourselfs */

SysBase=*((struct ExecBase **)(4L));

rc=20;

/* open the required libraries */

if (DOSBase=(struct DosLibrary *)

OpenLibrary("dos.library",37)) {

if (MMUBase=(struct MMUBase *)

OpenLibrary("mmu.library",40L)) {

err=ERROR_REQUIRED_ARG_MISSING;

/* Check for a valid MMU.

** The mmu.library will also

** open without!

*/

if (!GetMMUType()) {

Printf("MuContextTest requires "

"a working MMU.\n");

err=10;

} else {
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/* Run the tests */

MMUTaskTest();

err=0;

}

/* Check for error codes. Everything

** below 64 is considered to be a custom

** error and passed thru as primary

** result code.

*/

if (err<64) {

rc=err;

err=0;

} else {

PrintFault(err,"MuContextTest failed");

rc=10;

}

SetIoErr(err);

/* Shut down: Close libraries */

CloseLibrary((struct Library *)MMUBase);

} else PrintFault(ERROR_OBJECT_NOT_FOUND,"MuContextTest");

CloseLibrary((struct Library *)DOSBase);

}

return rc;

}

/* MMUTaskTest */

void MMUTaskTest(void)

{

struct MMUContext *ctx,*privctx;

UBYTE *testpage,*physical;

ULONG size,psize;

ULONG pother=TESTLOCATION;

ULONG error=0;

/* This is the TRUE test, finally. */

/* Get the public default context as template for the new

context */

Printf("Locating the default context...\n");

ctx=DefaultContext();

Printf("Building a new context...\n");

if (privctx=CreateMMUContext(MCXTAG_COPY,ctx,

/* make a copy of the already existing context */

/* Just stay to plain 4K or 1K pages. In case

** your are in an experimental mood, remove
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** these comments... (-:

** MCXTAG_PAGEBITS,13,

*/

MCXTAG_ERRORCODE,&error,

/* and deliver an error code */

TAG_DONE)) {

/* I don’t check here for an error, even though

** I should. The library will build the context,

** provided there is enough memory and the

** parameters are valid for the hardware, but

** "error" should be checked for problems the

** library found. This is only required if you

** tried to make a table setup different to the

** default - here the 8K pages. "error" should

** be checked for CCERR_UNALIGNED. In this case,

** the mmu.library had to round some descriptors

** heavely to be 8K aligned and the resulting

** page setup is most likely not what you want.

** For example, MAPP_REMAPPED pages have been

** trimmed, and the setup is therefore incorrect

** at the boundary.

*/

/* Find out the page size of this Context. */

size=GetPageSize(privctx);

Printf("Getting the new page size. "

"It is 0x%lx bytes.\n",size);

/* allocate a test page */

testpage=AllocAligned(size,MEMF_PUBLIC,size);

if (testpage) {

/* Find out the physical location of

** this page. Note that we use the

** public context since this is the

** context we’re running in. The other

** context has not yet been loaded.

*/

physical=testpage;

psize=size;

Printf("Allocating a test page.\n");

PhysicalLocation(ctx,(void **)&physical,&psize);

if (psize==size) {

/* remap (mirror) it to pother. This is just
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** for demonstrational purposes.

*/

Printf("Mirroring the page at 0x%08lx "

"(0x%08lx phys.) to 0x%08lx\n",

testpage,physical,pother);

if (SetProperties(privctx,MAPP_COPYBACK|MAPP_REMAPPED,

~0,pother,size,

MAPTAG_DESTINATION,physical,

TAG_DONE)) {

/* the above call modified only the software abstraction

** level. Now rebuild the MMU tree for the private

** context to reflect the changes

*/

Printf("Building a new MMU tree for the "

"private context...\n");

if (RebuildTree(privctx)) {

/* and run the test */

RunTests(privctx,testpage,(UBYTE *)pother);

/* all the rest is shutdown code */

} else Printf("Can’t rebuild the tree.\n");

} else Printf("Failed to setup memory remapping.\n");

} else Printf("Can’t handle fragmented memory.\n");

/* release the test page */

Printf("Releasing the test page.\n");

FreeMem(testpage,size);

} else Printf("Failed to allocate a test page.\n");

/* ... and the context */

Printf("Releasing the private context.\n");

DeleteMMUContext(privctx);

} else Printf("Failed to build the MMUTaskTest.\n");

}

/* RunTests */

void RunTests(struct MMUContext *privctx,

UBYTE *testpage,UBYTE *pother)

{

struct Process *proc;

struct Message *msg;
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struct Task *testtask,*mytask;

struct MsgPort *testport;

int i;

/* given the MMU context created above,

** create a new task

** and run it in this context

*/

/* Build a message with our process port

** as reply port. I’m here to lazy to

** setup a message port since we already

** have one.

*/

mytask=FindTask(NULL);

Printf("Building a new IO request for the test.\n");

msg=CreateIORequest(

&(((struct Process *)mytask)->pr_MsgPort),

sizeof(struct IORequest));

if (msg) {

/* build a new process. It will start in the

** default public context, but we will attach

** it to the private context as soon as it

** is set up.

*/

Printf("Creating a new task, in the public context.\n");

if (proc = CreateNewProcTags( NP_Entry,&TestProc,

NP_CurrentDir,NULL,

NP_StackSize,512,

NP_Name,"MuContextTest.task",

NP_Priority,0,

NP_ConsoleTask,NULL,

NP_HomeDir,NULL,

NP_CopyVars,FALSE,

TAG_DONE)) {

/* Get the task (uhm, complicated) and its

** process message port we use here for

** communications

*/

testtask=&(proc->pr_Task);

testport=&(proc->pr_MsgPort);

/* This is the trick: Let the tast enter the

** private context. From now on, the library will
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** exchange MMU trees on task switches,

** performing TRUE "context switches".

*/

Printf("Let the task enter the private context.\n");

if (EnterMMUContext(privctx,testtask)) {

/* This demonstrates that the library keeps

** caches consistently across contexts. They

** will be flushed correctly on a context

** switch. We pass a stupid message to the

** testtask, get it modified there and print

** it here.

*/

Printf("Setup a test string.\n");

strcpy(testpage,"A silly test.\n");

/* print the original */

Printf("%s",testpage);

msg->mn_Node.ln_Name=pother;

for (i=0;i<10;i++) {

/* pass over the message to the test task */

Sync(testport,msg);

/* print the result */

Printf("%s",testpage);

/* and restore the final A */

*testpage=’A’;

}

} else Printf("Failed to add the test "

"task to the context.\n");

/* tell the task to commit suicide. It will

** remove itself from the private context.

** This step is important and must be performed

** somewhere, or you’ll have a memory leak.

*/

Printf("Signalling the task to unload.\n");

msg->mn_Node.ln_Name=NULL;

Sync(testport,msg);

} else Printf("Can’t run child task.\n");
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Printf("Clean up the message.\n");

DeleteIORequest((struct IORequest *)msg);

} else Printf("Can’t build communication message.\n");

}

/* Sync */

void Sync(struct MsgPort *destination,struct Message *msg)

{

struct Task *mytask;

struct MsgPort *port;

/* naive sync between the calling task and the

** background task

*/

mytask=FindTask(NULL);

port=&(((struct Process *)mytask)->pr_MsgPort);

PutMsg(destination,msg);

WaitPort(port);

GetMsg(port);

}

/* TestProc: The main loop of the detached task */

void __saveds TestProc(void)

{

int i=0;

struct Message *msg=NULL;

struct MsgPort *port;

/* this is now the test task. Note that we have

** here our own MMU table.

*/

port=&(((struct Process *)(FindTask(NULL)))->pr_MsgPort);

for(;;) {

WaitPort(port);

msg=GetMsg(port);

/* get the next message */

/* end? If so, commit suicide */

if (msg->mn_Node.ln_Name==NULL)

break;

/* if not, just do something to make us known

** to the user

*/

(*(msg->mn_Node.ln_Name)) += i;

i++;

70 The MuLib Programmer’s Manual



ReplyMsg(msg);

}

/* The next step is important: We shut down,

** and hence have to

** leave the private context.

*/

LeaveMMUContext(FindTask(NULL));

/* We’re done. Make sure main doesn’t unload

** us before we’re shut down.

*/

Forbid();

ReplyMsg(msg);

}

9.4 Adjusting an Existing Context

Most of the Context parameters can be retrieved from a Context after its creation, and some can
also be set afterwards. To modify a context parameter, use

struct MMUContext *ctx;

SetMMUContextData(ctx,...);

It takes a pointer to the Context, and a list of tag items. The tags it accepts are a subset of the
parameters CreateMMUContext() accepts. They are listed and indicated as such in section 9.1
above.

The counterpart is GetMMUContextData(): It reads Context specific parameters, one at a
time:

struct MMUContext *ctx;

ULONG parameter;

option = GetMMUContextData(ctx,parameter);

The parameter argument is one of the tags defined for CreateMMUContext(). Note that this
call is not tag-based. It accepts a single tag id and returns a single result, namely the current setting
of the specified option.

In addition to those listed in section 9.1, the following tags defined in mmu/mmutags.h can also
be specified as argument to GetMMUContextData():

MGXTAG_PAGESIZE Returns the page size in bytes. Therefore, the function calls

GetMMUContextData(ctx,MGXTAG_PAGESIZE) == GetPageSize(ctx)

return identical results. Unlike MCXTAG_PAGEBITS, the return code is not an expo-
nent. The former specifies the page size in bytes, the latter the number of bits required to

address one page. Obviously, one has pagesize = 2bits.

MGXTAG_REMAPSIZE Returns the worst-case alignment restrictions for remapped mem-
ory in exec memory free lists. This is identical to the RemapSize() function discussed in
section 11.2.
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MGXTAG_PARENT In case this context is a shared context that is setup by means of MGX-
TAG_SHARE, returns the pointer to the parent context. Otherwise, returns NULL.

MGXTAG_ROOT Returns the pointer to the root level of the true hardware MMU descriptors.
The result is a ULONG *. This tag item is only provided for debugging software, you never
need to touch this yourself.

MGXTAG_CONFIG Returns a pointer to the MMUConfig structure which is strictly read
only. This structure is defined in mmu/config.h and contains the setup for all MMU registers
in case this Context gains the CPU (or rather, the MMU). Since this structure is only of
interest for debugging software, it is not explained here in detail. Just leave it alone.

9.5 Function Reference

As usual, this section is concluded with the functions introduced therein:

Table 7: Context Setup and Manipulation Functions

MuLib function Description

CreateMMUContext() Build a new Context
DeleteMMUContext() Dispose a Context
GetMMUContextData() Read Context parameters
SetMMUContextData() Define Context parameters
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10 Mapping Lists

The MuLib does not provide functions to reserve or allocate system addresses, for example to reserve
them as addresses for “virtual memory”. It does not implement these functions because it is not the
job of this library to do so; the MuLib is considered as a low-level interface to the MMU, and it is
up to a software wrapper on top of the MuLib to do so.

However, the MuLib offers functions to simplify the implementation of these features by making
its own “MMU list” management functions available to the outside. These so called “mapping
lists” do not have any influence on the MMU setup at all, they are a purely administration tool for
effective MMU list management. The same functions are used by the MuLib itself to implement the
high-level MMU setup calls like SetProperties(). Mapping lists can be seen as the basic tool to
hold the “properties” of the address space, hence they implement a memory map in an abstract way.
A memory map assigns a set of “property flags” to each address within, very much like the property
flags used in Context manipulation. However, the meaning of most of these flags is up to you because
they are never interpreted by the MuLib mapping list management functions themselves.

The mapping lists are handled by two basic objects: The MappingList and the MappingNode,
the contents of the MappingList. Both objects are extensions to the exec lists as defined in
exec/nodes.h and exec/lists.h.

The MuLib do not define a structure for the first object; just use it as if it would be a struct
MinList *. Nonetheless, do not allocate such lists yourself as the internal structure is somewhat
richer and includes data beyond the pure list management.

10.1 Creation and Deletion of Mapping Lists

The MuLib offers three functions to build mapping lists:

struct MinList *maplist;

maplist = NewMapping();

creates a new mapping list which is completely empty. The complete 4GB address space managed
by the list will be set to MAPP_BLANK.

The function call

struct MinList *maplist,*source;

maplist = DupMapping(source);

creates a full duplicate of an already existing mapping list. It comes in a special form for Contexts:

struct MinList *maplist;

struct MMUContext *ctx;

maplist = GetMapping(ctx);

This function call runs a DupMapping() on the Context implemented mapping list, hence creates
a duplicate of the high-level memory map defined by the Context passed in. This function was
introduced in section 4.3.

A mapping list, regardless of how it was created, is released by

struct Context *ctx;

struct MinList *maplist;

ReleaseMapping(ctx,maplist);
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The Context argument of this function is not used and a dummy due to the historical development
of the library.

What You Get is not What You See. Mapping lists are, even though they appear as
MinLists, not MinList structures. Please never ever try to allocate or release these
structures yourself, or you will mess up the internal memory management of the MuLib
— and cause a “guru” most likely.

10.2 Mapping Nodes

A mapping list holds nodes much like Exec lists hold nodes, namely as doubly linked list with
“header node”, which is the list structure itself. Each node on this list is called a “mapping node”,
and its structure is defined in mmu/context.h:

struct MappingNode {

struct MappingNode *map_succ;

struct MappingNode *map_pred;

ULONG map_Lower; /* lower address */

ULONG map_Higher; /* higher address, inclusive */

ULONG map_Flags; /* internal use only. */

ULONG map_Properties;/* your property flags */

union {

void *map_UserData; /* your data if invalid or swapped */

void *map_Page; /* destination page if bundled */

LONG *map_Descriptor;/* ptr to a descriptor */

LONG map_Delta; /* added to logical if remapped */

ULONG map_Mask; /* share mask for MAPP_SHARED */

} map_un;

};

As for mapping lists, never allocate this structure yourself. The MappingNode structure might
hold more components than defined above. Furthermore, it is strictly read only. The only way to
access these nodes is by calling MuLib functions.

A mapping list contains therefore an arbitrary number of mapping nodes, defining the properties
of each byte in the 4GB address space the MC68K family has to offer. This list is ordered by the
map_Lower field in the structure above, defining the lower end of the address region each mapping
node keeps care of. The list is not allowed to contain overlaps or holes, i.e. each byte in the 4GB
address space must be handled by one and exactly one mapping node.

The fields of this structure have the following meaning:

map_succ,map_pred Used for linking the mapping nodes together in the same way nodes on
the Exec lists are linked.

map_Lower The lower base address of the range of addresses that is managed by this node.
Mapping nodes are sorted by this lower address.

map_Higher The upper end of the range of addresses managed by this node. This address is
inclusive. Hence, a mapping node responsible for 4K of memory starting at 0x1000 will have
a map_Lower of 0x1000 and a map_Higher of 0x1fff. Therefore, the last mapping node
in a mapping list has map_Higher set to 0xffffffff.

map_Flags These flags are for internal use only. Do not touch them in any way. They are
intentionally undocumented.
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map_Properties This is the place where the “property flags” like MAPP_CACHEINHIBIT
are stored.

map_un This union keeps some user specific data for some special pre-defined property flags.
Namely,

map_UserData keeps user specific data in case the MAPP_INVALID or, alternatively, the
MAPP_SWAPPED property flag is set.

map_Page keeps the physical address of the destination page for MAPP_BUNDLED pages.

map_Descriptor keeps the address of the page descriptor for MAPP_INDIRECT pages.

map_Delta This is a special case for MAPP_REMAPPED pages. Unlike what one might
expect, the property node does not keep the physical destination for MAPP_REMAPPED
pages. Instead, it keeps the difference between the logical source address and the physical
destination address. You get the physical destination address by the formula

physical = node->map_un.map_Delta + node->map_Lower

map_Mask In case the MAPP_SHARED property flag is set, this mask defines which property
bits of the parent will be shared by this child. This mask is and’ed with the property flags
of the parent, and the result is binary or’ed with map_Properties of this structure to form
the final property flags of the child.

The map_un union is unused for all other property flags.

To give an example for the application of these mapping nodes: The “MuScan” program copies
the Context mapping list by GetMapping(), and then prints the contents of all mapping nodes in
this duplicate to the console by analyzing the structure above.

The MuLib implements the following functions to work on property lists:

struct MinList *from,*to;

ULONG base,length,mask;

BOOL fine;

fine = CopyMapping(from,to,base,length,mask);

This function transfers properties from one mapping list to another and filters them through a mask.
A 1-bit in the mask copies the corresponding property bit from the source to the destination, a 0 bit
leaves the destination intact. The length parameter indicates the size of the memory block whose
properties are to be transferred. As a special case, length = 0 and base = 0 means to transfer
the full list.

This function has an analog which takes a Context instead of a mapping list as source. It is
otherwise identical:

struct MMUContext *ctx;

struct MinList *to;

ULONG base,length,mask;

BOOL fine;

fine = CopyContextRegion(ctx,to,base,length,mask);
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Like all other MuLib calls, this and the previous functions don’t leave you with an unusable mapping
list in case it failed. Either, the resulting list will reflect all the requested changes, or the destination
list remains unmodified.

And last but not least, another analog which takes a mapping list as source and a Context as
destination:

struct MMUContext *ctx;

struct MinList *from;

ULONG base,length,mask;

BOOL fine;

fine = SetPropertiesMapping(ctx,from,base,length,mask);

This is therefore the list-based analog of SetProperties(); instead taking parameters and tag items
to define the property flags, they are read from the list passed in. There is, however, also a parameter
and tag based function which operates on mapping lists instead of Contexts. It is almost identical to
SetProperties(), it just takes a mapping list instead of a Context as destination operand, though
also returns a different result code:

struct MinList *to;

ULONG flags,mask,lower,size;

int result;

result = SetMappingProperties(to,flags,mask,lower,size,

TAG_DONE);

The result codes are as follows: It returns 0 on failure, much like SetProperties() but either 1
or 2 on success. The special result code 2 means that the mapping list was really altered, whereas
a result code of 1 means that the operation was performed successfully, but the resulting list was
identical to the list the operation started with. This happens, for example, if you tried to set some
property bits which have been set already before.

There is of course a similar call to extract information from a mapping list. It is the list-based
analogue of the Context based GetProperties():

struct MinList *maplist;

ULONG address;

ULONG flags;

flags = GetMappingProperties(maplist,address,TAG_DONE);

Very much like GetProperties(), this call returns the property flags for the logical address passed
in. Additionally, you may provide pointers to more variables to be filled in by passing the very same
tag items defined for GetProperties().
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10.3 Function Reference

Again, a brief overview about the mapping list functions:

Table 8: Memory Map Administration Functions

MuLib function Description

NewMapping() Allocate a new mapping list
GetMapping() Make a copy of a Context mapping list
DupMapping() Duplicate an existing mapping list
ReleaseMapping() Release a mapping list
CopyMapping() Copy a region from one list to another
CopyContextMapping() Copy a region from a Context to a list
SetPropertiesMapping() Copy a region from a list to a Context
SetMappingProperties() Define the mapping of a property list
GetMappingProperties() Read the flags from a property list

Mapping Lists 77



11 Miscellaneous Functions

This section introduces miscellaneous MuLib functions that do not belong to any other class. Most
of them are related low-level MMU programming and are usually not required by an arbitrary
program.

11.1 Aligned Memory Allocation

Even though the Exec memory allocation functions like AllocMem() guarantee to return LONG
or even quad word aligned memory blocks, this is sometimes not enough. Most MMU functions
operate on “pages” which start at multiples of the page size in memory, and the CPU caches divide
the memory in “cache lines” to four long words each. Therefore, it is desirable to have a function
that allocates memory according to stricter requirements:

ULONG bytesize,requirements,alignment;

void *mem;

mem = AllocAligned(bytesize,requirements,alignment);

This MuLib function, AllocAligned(), is similar to its Exec counterpart AllocMem() except that
it takes one additional parameter defining the required alignment: The returned (logical) address
is guaranteed to be a multiple of the alignment parameter passed in. This parameter must be
a power of two, though. As all MMU alignment restrictions fulfill this requirement, this is not a
restriction for the purpose of the MuLib.

The bytesize and requirements arguments are identical to the corresponding arguments of
AllocMem() and are described in more detail in the Exec AutoDocs and in the file exec/memory.h.

Similar to AllocMem(), AllocAligned() returns NULL in case of failure, and memory allo-
cated by means of AllocAligned() is released by FreeMem().

This call requires currently some trickery, its implementation is not “too nice”, but there is
currently not other way, unfortunately. Therefore, to allow future enhancements in the form of
external patches, the MuLib code calls this function over the _LVO library vector meaning that the
internal MuLib memory allocation can be transparently enhanced.

The MuLib provides a second specialized memory allocation function which might prove useful
in a mixed MC68K/PPC environment:

ULONG bytesize,requirements;

void *mem;

mem = AllocLineVec(bytesize,requirements);

This call allocates a memory vector similar to the Exec function AllocVec() which must be released
with FreeVec() afterwards. The memory vector returned is guaranteed to reside in its own cache
line to avoid cache interactions in a two-processor system. However, the address returned is not
guaranteed to be aligned to a cache line, even though the full vector including the vector length
count and the remaining vector are guaranteed to fill an even multiple of the cache line size. Before
returning, this function ensures that the vector length count is successfully written out to the
memory such that this information is consistently available to a second CPU. However, if you
specify MEMF_CLEAR, this function does not guarantee that the “zeros” written out by this
function in order to clear the memory region arrived in physical memory. Instead, they may reside
in the cache of the CPU that called this function. If this is a problem for your application, you
have to call the Exec function CacheClearE() or CacheClearU() to ensure that the caches are
properly pushed.
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The line alignment restrictions are currently hard-coded into this function, the cache line size is
fixed to 32 bytes. This happens to be the cache line size of the PPC processors, and twice the cache
line size of the MC68K family.

11.2 Public Memory Remapping

Some special race conditions arise in case you want to link remapped memory back into the exec
free list. It is in general not advisable to try this as some programs, mainly device drivers, do not
know how to handle this case correctly. Therefore, this matter is clearly an advanced feature and
should not be tried without precaution.

Remap in Private. If you remap memory, you are urged to allocate this memory first
to “reserve” the address range for your purpose. If you really want to setup an Exec
memory pool containing remapped memory, make sure that the attribute flags of this
memory pool do not have the MEMF_PUBLIC attribute bit set.

Especially, it is no good idea to “defragment” the Exec memory pool by remapping two non-adjoined
physical memory blocks to one continuous logical memory block. Even though this technique would
work provided all DMA device drivers would have been written according to the Os rules, namely by
using CachePreDMA() and CachePostDMA(), this protocol is hardly implemented correctly
at all and one should not expect this trick to work. Note, however, that the MuLib itself could
happily work in this environment as it knows, internally, the difference between physical and logical
addresses.

The hardware MMU descriptors have to fulfill even stronger alignment restrictions than the
MMU pages, and they usually cannot be fragmented. Hence, if you really really have to remap
parts of the exec free memory pool, it is not sufficient to align the boundaries of this pool to the
page size returned by GetPageSize(). This would break the MuLib MMU descriptor allocation
routines heavily — they will cause “guru” in case this situation is detected. Instead, the tougher
alignment restrictions returned by

ULONG remapsize;

struct MMUContext *ctx;

remapsize = RemapSize(ctx);

are necessary. Please be prepared that this will return an alignment constraint considerably larger
than a page size.

Another restriction when remapping public memory is that the remapped memory must remain
available under its physical address as well. This is, the physical address of the remapped memory
must remain valid, because the MuLib has to setup and write to the physical addresses from time
to time — as for example when constructing descriptors — and does not disable the MMU to avoid
the overhead.

11.3 Determining the MMU Type

For miscellaneous purposes, the MuLib offers a function to check which MMU type is available, and
whether a MMU is available at all:

char type;

type = GetMMUType();

This returns a single character specifying the MMU type detected in the running machine.
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Happy Without MMU? Unlike common believe, the MuLib will open even on systems
without any MMU. Some of its function calls will even work correctly, as for example the
memory map administration functions which do not require a working MMU in hardware.
However, the low-level MMU functions will return a failure code. It is therefore important
to check return codes properly, or to check whether a MMU is available in first place.

This function is currently able to detect the following MMU types, defined in mmu/mmubase.h:

MUTYPE_NONE No working MMU has been detected.

MUTYPE_68851 The library detected a 68020 with an external 68851 MMU.

MUTYPE_68030 A 68030 CPU with internal MMU was found in the system.

MUTYPE_68040 The internal 68040 MMU.

MUTYPE_68060 The 68060 MMU.

This function does currently not care about the PPC processors and their internal MMUs.

Beware of Economy Class. It is unfortunately not enough to check the processor type in
SysBase->AttnFlags to second-guess the type of the MMU which might be available.
Motorola produced so called “EC” processors — where “EC” is short for “Embedded
Controller” — which lack the build-in MMU of the corresponding full processors. Exec
is not able to tell them apart, but the MuLib is. Hence, it is indeed possible that the
AttnFlag field indicates a 68030 but GetMMUType() returns MUTYPE_NONE.
There is no contradiction. In principle, it is even possible to equip an 68EC030 with an
external 68851 MMU, even though the library does currently not handle this configura-
tion. In principle, a 68020 or 68030 based system could even provide multiple external
MMUs, but there is no Amiga board that makes use of this possibility, and the MuLib
does not support it.

11.4 Reprogramming the MMU Temporarily

For some low-level operations it is desirable to disable or reprogram the MMU temporarily. However,
note that you really cannot run large subroutines in this state as even the Os might be absent. You
are only able to call a tiny subroutine in supervisor mode, with all interrupts disabled. Therefore,
the routine has to be better quick!

ULONG result;

void *proc;

result = WithoutMMU(proc);

This function calls the subroutine passed in as proc with the MMU and all interrupts disabled.
Therefore, proc has to be a physical address. The subroutine must end with an RTS to return to
the calling code.

The called routine has full access to all registers, it will be completely register-transparent.
Whatever was left in the CPU registers when calling WithoutMMU() will be available to this
routine, and whatever will be left in the CPU registers by this routine will remain in the registers
after WithoutMMU() when your routine returned. Note that this is the only way to guarantee
correct parameter passing as it is not clear whether the logical addresses used by the caller are
identical to the physical addresses seen with the MMU disabled.

Due to the very nature of this routine, the CPU caches have to be disabled temporarily as well.
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Where’s my Kickstart? Because the MMU is disabled by this call, it is not at all clear that
the Os image doesn’t vanish as well, or is maybe exchanged by a completely different Os
image. Therefore, not a single Os function can be safely called within your subroutine.

The MuLib offers a second function of the same flavor, namely

ULONG result;

void *proc;

result = RunOldConfig(proc);

It is identical to WithoutMMU(), including all the restrictions, except that it does not clear the
MMU setup, but it loads the MMU with the setting the MuLib found active when it was loaded.
This might have been an empty MMU setup as well, dependent on how the user installed the MuLib.

11.5 Setting the Physical Bus Error Handler

It is not the purpose of the MuLib to handle physical bus errors, i.e. exceptions generated by external
hardware due to access violations. The MuLib cares only about the MMU generated exceptions and
passes all other exceptions through to the exception handler which have been installed before the
MuLib has been loaded. This is typically the Exec exception handler which will sooner or later
run into a “guru”. In case this is not desirable, you can tell the MuLib to call a different exception
handler instead:

void (*NewExcept)();

void (**oldexcept)();

SetBusError(NewExcept,oldexcept);

The SetBusError() function installs the newexcept handler and keeps the address of the old
handler in oldexcept. The new handler must be ready to run immediately. Furthermore, the MuLib
establishes no protocol how physical bus errors should be shared amongst several applications, if
this is desirable at all.

The “handler” is not an MMU-type exception handler; the MuLib jumps into this handler if it
detects an exception it can’t handle or it is not responsible for, restoring the exception stack frame
and all CPU registers. Therefore, your code will be called “as if” you installed your handler directly
in the exception vector base of the MC68K processor. This means, specifically, you have to save
the registers you modify, and you have to exit either by an RTE or by calling the old exception
handler. Avoid hacking into the CPU exception vector base directly because some MMU
related exceptions should be handled quickly, for example AbsExecBase access emulation. The
MuLib exception handler must be called first.

11.6 Function Reference

This section presents again the reference for the miscellaneous functions:

Table 9: Miscellaneous Functions

AllocAligned() Allocate a memory block aligned
AllocLineVec() Allocate a vector aligned to cache lines
RemapSize() Get alignment for remapped public memory
GetMMUType() Check for the available MMU
WithoutMMU() Call a subroutine with the MMU disabled
RunOldConfig() Call a routine with the previous MMU setup
SetBusError() Install a physical bus error handler
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12 Library and MMU Configuration

The setup and configuration of the Memory Management Unit depends unfortunately on the hard-
ware present in the system. While CBM engineers provides some general guidelines on how to create
a generic MMU setup, some third-party vendors did not follow such recommendations and their
hardware require a customized setup. The knowledge of how such hardware has to be configured
is then typically hidden in the vendor-specific CPU library, e.g. the 68040.library or 68060.library
supplied along with the board.

As the MuLib attempts to be a generic solution, its default MMU setup follows the recommenda-
tions of CBM. Most well-engineered boards should be able to work with this default setup. However,
the MuLib can also be configured to custom hardware by two mechanisms: The MMU-Configuration

file, which is loaded upon startup of the library from the ENV: or ENVARC: device, and the MMUInit

resident module. The former mechanism is a text file that can be edited by the user, the latter is a
resident module that should be placed by third-party vendors in the exec list of resident modules,
and will be found during setup of the MuLib to customize its setup.

This section will introduce all three mechanisms, the default setup, the MMU-Configuration file
and the MMUInit module.

12.1 Initial MMU Configuration

Upon loading the MuLib, the library will first attempt to build a default configuration of the MMU,
or will attempt to clone an already loaded MMU setup. What exactly happens depends on the time
the library is opened.

If SetPatch is already present, but the CPU support libraries, i.e. either the 68040 or the
68060.library are not yet present, the MuLib setup logic assumes that it can create a new MMU
setup from scratch. In such a case, the configuration currently loaded into the MMU is ignored,
and a completely new configuration is compiled. In particular, the Transparent Translation
Registers that allow a very coarse-level configuration of the cache modes on a 16MB basis are
cleared and not used. If the mmu.library is loaded by one of the MuLib-supplied CPU libraries,
i.e. the 680x0.library or any other library that is part of the MuLib distribution, then this type
of initialization will be performed. The MuLib will then, indirectly, be loaded through SetPatch
while initializing a CPU library.

If either SetPatch is not loaded, or the CPU libraries are already present, the MuLib assumes
that it should be run on top of an already established MMU configuration. In such a case, it tries
to clone the existing configuration as good as possible. In particular, any existing MMU setup is
analyzed, including the Transparent Translation Registers, and a new MMU configuration is
constructed from whatever configuration is currently present in the MMU.

12.2 The Default MMU Configuration

If the MuLib is loaded through SetPatch, it builds its own configuration following the same procedure
as Mike Sinz’ Enforcer program:

✷ The full 4GB of memory are mapped as MAPP_BLANK, hence blocking any read or write
access initially.

✷ The ROM area is marked as MAPP_ROM, blocking any write access to this area, but
allowing read access. The size of the ROM is taken from ROMEnd - 0x14, where ROMEnd is the
physical end of the Kickstart ROM at the 16MB boundary. Note that this indicates only the
size of the upper ROM area, or the official Kickstart ROM. Hence, the size indicator found
here cannot be larger than 512K.
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✷ The library checks the exec resident list. If any resident modules are found in the lower ROM
area from 0xe00000 to 0xe80000, then this area is also mapped as ROM. Otherwise, this area
remains blank.

✷ The debug-ROM area from 0xf00000 to 0xf80000 is marked as cache-inhibited. Unfortu-
nately, some third party custom hardware places ROM as well as I/O-devices here, requiring
a cache-inhibit setting as most conservative MMU configuration. This area should be blank,
but unfortunately cannot.

✷ The exec memory lists are checked. Any memory marked as MEMF_CHIP is marked as
cache-inhibit, non-serial and imprecise, all other memory types are marked as cacheable with
copyback caching enabled, which is the fastest caching mode.

✷ The list of auto-configured boards of the expansion.library is checked. Any auto-configured
board is mapped as cache-inhibited, except those boards that indicated that they provide
expansion memory. Such memory-boards have already been handled by the above step and
are hence ignored in this step.

✷ Motherboard resources are made available. In particular, the memory regions occupied by
the custom chips, the CIAs and the real-time clock are marked as cache-inhibited. If the
card.resource is found, the PCMCIA configuration area from 0x600000 to 0xa80000 is
marked as cache-inhibited as well. If the cdstrap resident module is found, indicating the
presence of either the CDTV or CD32 hardware, and no resident modules are found in the lower
ROM area, then this area is made available as cache-inhibited as well. Otherwise, if ROM-
modules are present here, then the setup of the lower ROM area was already completed above
as part of the KickStart ROM mapping.

✷ The lowest 16K of memory, typically consisting the auto vectors of the machine and some
globals of the Mac operating system required for emulation are also marked as cache-inhibited.

Even if the library is loaded on top of an existing setup, some modifications to the MMU setup
are made. However, these changes do not impact the low-level MMU tables, but only the high-level
abstraction layer. In particular, all hardware resources from the motherboard and the expansion
devices are marked as MAPP_IO to stop software from directly accessing such resources when
attempting to repair a bus access or disassemble programs.

12.3 The MMU-Configuration File

Once default initialization completed, the MuLib checks for its configuration file in ENV: and
ENVARC:. The MMU-Configuration is a user-editable file that overrides the default setup, or
the setup left by third-party programs in case the MuLib was loaded on top of an existing setup.

This text file is read similar to the Startup-Sequence. Each line contains a command, and the
semicolon ; separates comments from the commands. Commands can be either build into the library,
or can be provided externally in the directory LIBS:mmu. If a command cannot be identified as
an internal command, the library attempts to load the command from the above directory.

Not Shell Commands. Even though the MMU-Configuration reads like a shell-script,
it is not. In particular, the external commands in LIBS:mmu do not follow the same
structure as Shell commands, and cannot be loaded from the AmigaOs shell, though for
most internal commands, a similar MuTool exist as native AmigaOs command. Shell
commands cannot be used in the MMU-Configuration either.

The following internal commands currently exist within the library itself:
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ClearTTX This internal command clears one or more transparent translation registers of the MMU
before starting the default MMU setup. Since the TTx registers are typically setup to provide a
reasonably working default setup, the MMU configuration implied by them is also covered by
the default MMU setup of the library, and in most cases, it is advisable to clear these registers
and not to integrate them into the MMU setup at all. Hence, a custom MMU-Configuration
should start with this command.

This command accepts the following options:

ALL Clear all TTx registers. This is the default.

ITT0 Clear the instruction transparent translation register 0.

ITT1 Clear the instruction transparent translation register 1.

DTT0=TT0 Clear the data transparent translation register 0 or the transparent translation
register, depending on availability.

DTT1=TT1 Clear the data transparent translation register 1 or the transparent translation
register 1.

AddMem Add non-autoconfigurable memory to the exec memory pool and also adjust the MMU
configuration for the memory provided. This command makes it easy to add non-autoconfig
memory to the system while at the same time also keeping care of the proper MMU setup for
this this memory.

The following options are provided:

FROM=ADDRESS The start address of the memory to be added in hex. An optional $

or 0x may be added upfront.

LENGTH=SIZE The size of the memory to be added, in bytes. This is again a hexadecimal
number, optionally starting with $ or 0x.

ATTR=FLAGS The memory attributes, in decimal. This is typically set to 5, that is,
MEMF_FAST. Other memory attributes can be found in the file exec/memory.h. If
the attributes start with $ or 0x, they are in hexadecimal instead.

PRI The priority of the memory. Memory with a higher priority will be used first for alloca-
tion, lower priority memory only if the higher priority memory runs out. This is also a
decimal number.

NAME A human-readable name for the memory in to be added, e.g. "32-bit RAM". The
system does not use the name, it is only recorded in the system and can be printed by
various system monitors.

SetCacheMode Modifies the MMU setup of a range of memory directly, overriding the default
setup of the library (see above how the default setup is generated). This command allows to
customize the MMU configuration for boards that do not announce themselves correctly to
the system.

FROM=ADDRESS The start address of the logical memory address whose MMU setup is
to be modified, in hexadecimal. An optional $ or 0x may be added upfront.

LENGTH=SIZE The size of the region to be modified, in bytes. As above, the size has to
be given in hex, with an optional $ or 0x in front.

COPYBACK Enables the copyback caching mode for the indicated memory range.

WRITETHROUGH Enables write-through caching. This is also the default.

CACHEINHIBIT Disables caching for the memory region.
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NONSERIAL For cache-inhibited modes, additionally allow the CPU to re-order accesses
to improve performance. Cached accesses are always non-serialized.

IMPRECISE For cache-inhibited modes, allow imprecise exception handling on hardware
bus-errors, thus improving performance a bit. For all cached modes, exception-handling
is always imprecise anyhow.

VALID Mark the region as reachable by the CPU, i.e. accesses reach the physical hardware.

BLANK=INVALID Mark the address region as invalid. All accesses to this region will
be caught and ignored by the physical hardware. This makes the physical target at this
memory region inaccessible.

IO=IOSPACE Indicate that the address region is occupied by an I/O device and no attempt
should be made to read from this area for disassembly or debugging purposes.

NOIO=NOIOSPACE Indicate that the memory region is not an I/O device, but memory
that may contain program code or program data. The memory region can be read without
side-effects.

ROM=WRITEPROTECTED Enable a write-protection on the indicated memory region.
Any attempt to write to this area will be blocked.

RAM=NOROM Disables any write-protection on the indicated area.

DescriptorCacheInhibit Disables or enables the caching of the hardware MMU descriptors.
While the hardware manual of the 68K CPUs indicate that MMU descriptors shall be in
non-cacheable memory, the MuLib prevents caching of descriptors by other means and does
not require this additional condition. However, if third-party software bypasses the MuLib
and writes to the MMU descriptors itself, it may be necessary to place them in non-cacheable
memory. This can be enforced by including this command in the MMU-Configuration.

Command arguments are as follows:

ON Ensure that MMU descriptors are in cache-inhibited memory.

OFF Descriptors can also be placed in cacheable memory, the MuLib takes all necessary
precautions to avoid conflicts between the MMU and the CPU. This is also the default
setting.

ClearMMU Rebuilds some selected parts of the MMU configuration and hence performs all or
parts of the default MMU configuration, even if the MuLib was run on top of an existing MMU
setup. This command can be used to enforce a partial or complete rebuilding of the MMU
configuration even in cases the MuLib is not loaded by SetPatch. Clearly, this command
should be run on top of the MMU-Configuration as it will erase all settings installed by
SetCacheMode.

The following parts of the MMU configuration can be recomputed:

MEMORY Re-compute the MMU tables for all memory types found in the system.

MOTHERBOARD Re-compute the mapping of motherboard resources.

EXPANSION Re-compute the mapping of expansion cards except those adding memory to
the system.

ROM Re-do the mapping of the KickStart ROM.

RESERVED Mark the reserved areas, i.e. the entire upper 2GB of the full address space as
blank, making the Zorro-III autoconfig area unavailable. Note that autoconfig is already
run at the time the MuLib is loaded, so no harm is done by this function.
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BLANK Mark all areas found in the original setup as non-mapped as MAPP_BLANK. Also
indicates that tools like MuForce will detect accesses to such areas as invalid. This may
be required to allow MuForce run on a custom setup.

ALL Re-run the default MMU configuration and ignore any settings left over from the con-
figuration found present before the MuLib was loaded.

For This command selectively runs other commands depending on the presence of a particular
auto-configuring hardware. The command and all its arguments for which FOR formulates
a condition has to follow the conditions of FOR on the same line. In combination with the
SetCacheMode command, it allows to conditionally map board types depending on their
availability. If the board type given by the arguments of FOR is not available, the command is
skipped. Otherwise, For performs a couple of substitutions on the arguments of the following
command; it may, for example, substitute the start address and size of a board type in the
command arguments. This allows very flexible MMU-Configurations that include mappings
for known boards, but only activates them if such a board is present in the system.

The following options are supported by For:

MANUFACTURER The manufacturer ID in decimal for which the following command
shall be conditionally run. If no such board is found, this command is skipped. If the
manufacturer ID starts with $ or 0x, the ID is given in hex instead.

PRODUCT The product ID of the product for which a command shall be run conditionally.
The pair of product and manufacturer ID identifies a specific board uniquely. As for the
manufacturer ID, this number is specified in decimal unless it starts with a $ or a 0x.

ZORRO2=Z2 Only run the command if the identified product maps to the Zorro II auto-
configuration area, otherwise skip it.

ZORRO3=Z3 Only run the command if the product identified by manufacturer and product
ID is mapped into the Zorro III auto-configuration area.

BIG Only run the command for an expansion node whose size is larger or equal to than 1MB.
Some boards appear twice in the auto-configuration chain, once for the board memory,
and once for an I/O device. This flag can be used to filter out the memory part of the
board.

CMD The command and its arguments that are to be executed if a matching board is found.
The command follows directly behind the arguments of FOR, on the very same line.
Additionally, FOR performs a couple of substitutions of its arguments. Any string that
is enclosed in curly braces { } is subject to substitution. During substitution, simple
arithmetic operations such as addition and subtraction can be performed.

{base} This string is substituted by the base address of the found board. The curly braces
may additionally include a constant offset that is added or subtracted from the address
or size, e.g. {base+0x10000} is the base address plus 64K. Note that the keyword base
must be following the opening brace immediately.

{from} Identical to {base}

{head} Identical to {base}

{size} The size of the memory region occupied by the identified board in bytes.

{tail} The highest address just beyond the identified board. This is identical to {base} +
{size} except that the latter expression cannot be parsed by FOR.

The FOR command allows very flexible setups that enable or disable mappings depending
on the boards in the setting. For example, the following line optimizes the cache mode of the
video RAM of the GVP Spectrum graphics board to non-serial and imprecise:
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For 2193 1 SetCacheMode {base} {size} CacheInhibit NonSerial Imprecise

The two numbers (2193 and 1) identify the board by its vendor (GVP=2193) and product
(1), the rest of the line executes the SetCacheMode command described above, and modifies
the MMU setup for the region from {base}, i.e. the start of the board of {size} bytes to
cache-inhibited, non-serial and imprecise. This is the ideal mapping for this graphics card.

Without this command, the setup would still work, but the MuLib itself contains no database
of third-party products. As such, the GVP Spectrum graphics memory would only be mapped
as cache-inhibited. This mapping works correctly, but is not as fast as it can.

The ShowConfig utility on the workbench can be used to list the boards in the system, and
hence to compile an ideal MMU-Configuration for the system.

12.4 External Commands

If the MuLib detects in MMU-Configuration a command it does not know, it tries to load this
command from a file in LIBS:mmu. Such external commands use the standard Amiga “Hunk”
format, but the calling convention is different. They cannot be run from the Shell. The structure
of these commands is as follows:

Similar to AmigaOs libraries, they are not started at the first byte of the binary, but instead
at the rt_Init code of a Resident structure (see exec/resident.h) contained in the binary. The
rt_Name of the structure must be identical to the file name. CPU registers are filled as follows:

a6 is filled with MMUBase, that is, the base pointer of the mmu.library.

a1 is set to the pointer of the MMUContext that is to be modified by the command.

a0 is set to a struct RDArgs (see dos/rdargs.h) that can be used to parse the arguments of the
command.

a2 is filled with a pointer to DOSBase, the dos.library base address.

The command is expected to return a result code in register d0, similar to Shell commands.
Zero indicates success, everything between 1 and 10 is a warning, and all result codes above and
including 20 indicate a fatal error. If an error is detected, the MuLib will display an error requester
and abort initialization.

Called always twice. If you want to implement an external command for the MMU-
Configuration file, you should be aware that any external command will be called at
least twice, even if it appears only once in the configuration. This is because the MuLib
goes through the configuration file twice: Once to setup the public MMUContext,
and once to setup the public supervisor context. Hence, if your command uses I/O
accesses to detect or identify a non-autoconfiguring hardware, it must make sure that
the configuration mechanism can be run twice, and will return with the identical result
on both runs.

12.5 MMUInit

The MuLib also supports a third source for configuration, namely a resident module of the name
MMUInit. If, upon initialization, such a resident module is found via FindResident(), the library
startup code will attempt to initialize it before interpreting the MMU-Configuration file. Similar
to external commands, this module is called through its rt_Init vector with the following values
in the registers:
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a6 is filled with MMUBase, that is, the base pointer of the mmu.library.

a1 is set to the pointer of the MMUContext that is to be modified by the command.

Neither DOSBase nor an RDArgs structure is provided.
The purpose of MMUInit is to allow third-party hardware proper configuration and customiza-

tion of the MMU setup without requiring any manual user configuration. However, since this resident
module is called before the library parses its configuration file, any setting made by the resident
module can be overridden by the customer. Similar to external commands, MMUInit will also be
called twice, once for the public context, and once for its supervisor context.
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