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1.  Introduction:  What is a thread and what is it good for?

Threads are often called lightweight processes and while this term is somewhat of an over simplification, it
is a good starting point.  Threads are cousins to UNIX processes though they are not processes themselves.
To understand the distinction we must examine the relation between UNIX processes and Mach tasks and
threads.  In UNIX, a process contains both an executing program and a bundle of resources such as the file
descriptor table and address space.  In Mach, a task contains only a bundle of resources; threads handle all
execution activities.  A Mach task may have any number of threads associated with it and all threads must be
associated with some task.  All threads associated with a given task share the task's resources.  Thus a thread
is essentially a program counter, a stack, and a set of registers -- all the other data structures belong to the task.
A UNIX process in Mach is modeled as a task with a single thread.

Since threads are very small compared with processes, thread creation is relatively cheap in terms of CPU
costs.  As processes require their own resource bundle, and threads share resources, threads are likewise
memory frugal.  Mach threads give programmers the ability to write concurrent applications that run on both
uniprocessor and multiprocessor machines transparently, taking advantage of the additional processors when
they exist.  Additionally, threads can increase performance in a uniprocessor environment when the application
performs operations that are likely to block or cause delays, such file or socket I/O.

In the following sections we discuss portions of the POSIX threads standard and its specific implementation
in the DEC OSF/1 OS, V3.0.  POSIX threads are called pthreads and are similar to the non-POSIX cthreads.

2.  Hello World

Now that the formalities are over with, lets jump right in.  The pthread_create function creates a new
thread.  It takes four arguments, a thread variable or holder for the thread, a thread attribute, the function for
the thread to call when it starts execution, and an argument to the function.  For example:

pthread_t a_thread;
pthread_attr_t a_thread_attribute;
void thread_function(void *argument);
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char *some_argument;

pthread_create( &a_thread, a_thread_attribute, (void *)&thread_function, 
(void *) &some_argument);

A thread attribute currently only specifies the minimum stack size to be used.  In the future thread attributes
may be more interesting, but for now, most applications can get by simply using the default by passing
pthread_attr_default in the thread attribute parameter position.  Unlike processes created by the UNIX
fork function that begin execution at the same point as their parents, threads begin their execution at the
function specified in pthread_create.  The reason for this is clear; if threads did not start execution
elsewhere we would have multiple threads executing the same instructions with the same resources.  Recall
that processes each have their own resource bundle and threads share theirs.  

Now that we know how to create threads we are ready for our first application.  Lets design a multi-threaded
application that prints the beloved "Hello World" message on stdout.  First we need two thread variables and
we need a function for the new threads to call when they start execution.  We also need some way to specify
that each thread should print a different message.  One approach is to partition the words into separate
character strings and to give each thread a different string as its "startup" parameter.  Take a look at the
following code:

void print_message_function( void *ptr ); 

main()
{

pthread_t thread1, thread2;
char *message1 = "Hello";
char *message2 = "World";

pthread_create( &thread1, pthread_attr_default,
 (void*)&print_message_function, (void*) message1);

pthread_create(&thread2, pthread_attr_default, 
(void*)&print_message_function, (void*) message2);

exit(0);
}

void print_message_function( void *ptr )
{

char *message;
message = (char *) ptr;
printf("%s ", message);

}

Note the function prototype for print_message_function and the casts preceding the message arguments
in the pthread_create call.  The program creates the first thread by calling pthread_create and passing
"Hello" as its startup argument; the second thread is created with "World" as its argument.  When the first
thread begins execution it starts at the print_message_function with its "Hello" argument.  It prints
"Hello" and comes to the end of the function.  A thread terminates when it leaves its initial function  therefore
the first thread terminates after printing "Hello."  When the second thread executes it prints "World" and
likewise terminates.  While this program appears reasonable, there are two major flaws.  

First and foremost, threads execute concurrently.  Thus there is no guarantee that the first thread reaches the
printf function prior to the second thread.  Therefore we may see "World Hello" rather than "Hello World."
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parent thread to distinguish it from later spawned threads, which we will refer to as child threads or children.
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There is a more subtle point.  Note the call to exit  made by the parent thread  in the main block.  If the parent1

thread executes the exit call prior to either of the child threads executing printf, no output will be
generated at all.  This is because the exit function exits the process (releases the task) thus terminating all
threads.  Any thread, parent or child, who calls exit can terminate all the other threads along with the process.
Threads wishing to terminate explicitly must use the pthread_exit function.

Thus our little hello world program has two race conditions.  The race for the exit call and the race to see
which child reaches the printf call first.  Lets fix the race conditions with a little crazy glue and duct tape.
Since we want each child thread to finish before the parent thread, lets insert a delay in the parent that will give
the children time to reach printf.  To ensure that the first child thread reaches printf before the second,
lets insert a delay prior to the pthread_create call that creates the second thread.  The resulting code is:

void print_message_function( void *ptr ); 

main()
{

pthread_t thread1, thread2;
char *message1 = "Hello";
char *message2 = "World";

pthread_create( &thread1, pthread_attr_default,
 (void *) &print_message_function, (void *) message1);

sleep(10);
pthread_create(&thread2, pthread_attr_default, 

(void *) &print_message_function, (void *) message2);

sleep(10);
exit(0);

}

void print_message_function( void *ptr )
{

char *message;
message = (char *) ptr;
printf("%s", message);
pthread_exit(0);

}

Does this code meet our objective?  Not really.  It is never safe to rely on timing delays to perform
synchronization.  Because threads are so tightly coupled its tempting to approach them with a less rigorous
attitude concerning synchronization, but that temptation must be avoided.  The race condition here is exactly
the same situation we have with a distributed application and a shared resource.  The resource is the standard
output and the distributed computing elements are the three threads.  Thread one must use printf/stdout
prior to thread two and both must do their business before the parent thread calls exit.

Beyond our attempt to synchronize using delays, we have made yet another blunder.  The sleep  function,
like the exit function relates to processes.  When a thread calls sleep the entire process sleeps, i.e., all
threads sleep while the process sleeps.  Thus we have exactly the same situation as we had without the calls
to sleep but the program takes twenty seconds longer to run.  The proper function to use when delaying a
thread is pthread_delay_np  (np stands for not process).  For example, to delay a thread for two seconds:
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struct timespec delay;
delay.tv_sec = 2;
delay.tv_nsec = 0;
pthread_delay_np( &delay );

Functions covered in this section: pthread_create(), pthread_exit(),
pthread_delay_np().

3.  Thread Synchronization

POSIX provides two thread synchronization primitives, the mutex and the condition variable.  Mutexes are
simple lock primitives that can be used to control access to a shared resource.  Note that with threads, the
entire address space is shared so everything can be considered a shared resource.  However, in most cases
threads work individually with (conceptually) private local variables, those created within the function called
by pthread_create and successive functions, and combine their efforts through global variables.  Access
to the commonly written items must be controlled.

Lets create a readers/writers application where a single reader and a single writer communicate using a shared
buffer and access is controlled using a mutex.

void reader_function(void);
void writer_function(void);

char buffer;
int buffer_has_item = 0;
pthread_mutex_t mutex;
struct timespec delay;

main()
{

pthread_t reader;

delay.tv_sec = 2;
delay.tv_nsec = 0;

pthread_mutex_init(&mutex, pthread_mutexattr_default);
pthread_create( &reader, pthread_attr_default, (void*)&reader_function,
 NULL);
writer_function();

}

void writer_function(void)
{

while(1)
{

pthread_mutex_lock( &mutex );
if ( buffer_has_item == 0 )
{

buffer = make_new_item();
buffer_has_item = 1;

}
pthread_mutex_unlock( &mutex );
pthread_delay_np( &delay );

}
}

void reader_function(void)
{
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while(1)
{

pthread_mutex_lock( &mutex );
if ( buffer_has_item == 1)
{

consume_item( buffer );
buffer_has_item = 0;

}
pthread_mutex_unlock( &mutex );
pthread_delay_np( &delay );

}
}

In this simple program we assume that the buffer can only hold one item so it is always in one of two states,
either it has an item or it doesn't.  The writer first locks the mutex, blocking until it is unlocked if it is already
locked, then checks to see if the buffer is empty.  If the buffer is empty, it creates a new item and sets the flag,
buffer_has_item, so that the reader will know the buffer now has an item.  It then unlocks the mutex and
delays for two seconds to give the reader a chance to consume the item.  This delay is different from our
previous delays in that it is only meant to improve program efficiency.  Without the delay, the writer will
release the lock and in the next statement attempt to regain the lock again with the intent of creating another
item.  Its very likely that the reader has not had a chance to consume the item so quickly so the delay is a good
idea.

The reader takes a similar stance.  It obtains the lock, checks to see if an item has been created, and if so
consumes the item.  It releases the lock and then delays for a short while giving the writer the chance to create
a new item.  In this example the reader and writer run forever, generating and consuming items.  However, if
a mutex is no longer needed in a program it should be released using pthread_mutex_destroy(&mutex).
Observe that in the mutex initialization function, which is required, we used the pthread_
mutexattr_default as the mutex attribute.  In OSF/1 the mutex attribute serves no purpose what so ever,
so use of the default is strongly encouraged.  

The proper use of mutexes guarantees the elimination of race conditions.  However, the mutex primitive by
itself is very weak as it has only two states, locked or unlocked.  The POSIX condition variable supplements
mutexes by allowing threads to block and await a signal from another thread.  When the signal is received,
the blocked thread is awaken and attempts to obtain a lock on the related mutex.  Thus signals and mutexes
can be combined to eliminate the spin-lock problem exhibited by our readers/writers problem.  We have
designed a library of simple integer semaphores using the pthread mutex and condition variables and will
henceforth discus synchronization in that context.  The code for the semaphores can be found in Appendix A
and detailed information about condition variables can be found in the man pages.

Functions covered in this section: pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_unlock(), pthread_mutex_destroy().

4.  Coordinating Activities With Semaphores

Let us revisit our readers/writers program using semaphores.  We will replace the mutex primitive with the
more robust integer semaphore and eliminate the spin-lock problem.  Semaphore operations are
semaphore_up, semaphore_down, semaphore_init, semaphore_destroy, and
semaphore_decrement.  The up and down functions conform to traditional semaphore semantics -- the
down operation blocks if the semaphore has a value less than or equal to zero and the up operation increments
the semaphore.  The init function must be called prior to semaphore use and all semaphores are initialized with
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a value of one.  The destroy function releases the semaphore if it is no longer used.  All functions take a single
argument that is a pointer to a semaphore object.

Semaphore decrement is a non-blocking function that decrements the value of the semaphore.  It allows
threads to decrement the semaphore to some negative value as part of an initialization process.  We will look
at an example that uses semaphore_decrement after the readers/writers program.

void reader_function(void);
void writer_function(void);

char buffer;
Semaphore writers_turn;
Semaphore readers_turn;

main()
{

pthread_t reader;

semaphore_init( &readers_turn );
semaphore_init( &writers_turn );

/* writer must go first */
semaphore_down( &readers_turn );

pthread_create( &reader, pthread_attr_default, 
(void *)&reader_function, NULL);

writer_function();
}

void writer_function(void)
{

while(1)
{

semaphore_down( &writers_turn );
buffer = make_new_item();
semaphore_up( &readers_turn );

}
}

void reader_function(void)
{

while(1)
{

semaphore_down( &readers_turn );
consume_item( buffer );
semaphore_up( &writers_turn );

}
}

This example still does not fully utilize the power of the general integer semaphore.  Let us revise the hello
world program from Section 2 and fix the race conditions using the integer semaphore.

void print_message_function( void *ptr );

Semaphore child_counter;
Semaphore worlds_turn;

main()
{

pthread_t thread1, thread2;
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char *message1 = "Hello";
char *message2 = "World";

semaphore_init( &child_counter );
semaphore_init( &worlds_turn );

semaphore_down( &worlds_turn ); /* world goes second */

semaphore_decrement( &child_counter ); /* value now 0 */
semaphore_decrement( &child_counter ); /* value now -1 */
/* 
 * child_counter now must be up-ed 2 times for a thread blocked on it
 * to be released 
 *
 */

pthread_create( &thread1, pthread_attr_default, 
(void *) &print_message_function, (void *) message1);

semaphore_down( &worlds_turn );

pthread_create(&thread2, pthread_attr_default, 
(void *) &print_message_function, (void *) message2);

semaphore_down( &child_counter );

/* not really necessary to destroy since we are exiting anyway */
semaphore_destroy ( &child_counter );
semaphore_destroy ( &worlds_turn );
exit(0);

}

void print_message_function( void *ptr )
{

char *message;
message = (char *) ptr;
printf("%s ", message);
fflush(stdout); 
semaphore_up( &worlds_turn );
semaphore_up( &child_counter );
pthread_exit(0);

}

Readers can easily satisfy themselves that there are no race conditions in this version of our hello world
program and that the words are printed in the proper order.  The semaphore child_counter  is used to force
the parent thread to block until both children have executed the printf statement and the following
semaphore_up( &child_counter ).

Functions covered in this section: semaphore_init(), semaphore_up(),
semaphore_down(), semaphore_destroy(), and
semaphore_decrement().

5.  Pragmatics

To compile with pthreads you must include the pthread header file, #include <pthread.h> and must link
to the pthread library.  For example, cc hello_world.c -o hello_world -lpthreads
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To use the semaphore library you must likewise include its header file and link to the object file or the library.

The DEC pthreads are based on the POSIX IV threads standard, not the POSIX VIII threads standard.  The
function pthread_join allows one thread to wait for another to exit.  While this could be used in the hello
world program to determine when the children are done instead of our decrement/up semaphore operations,
the DEC implementation of pthread_join has unreliable behavior if the thread object specified no longer
exists.  For example, in the code below, if some_thread no longer exists, pthread_join may cause an error
instead of just returning.  

pthread_t some_thread;
void *exit_status;
pthread_join( some_thread, &exit_status );

Other strange errors may occur from functions outside of the thread routines.  While these errors are few and
far between, some libraries make "uni-process" assumptions.  For example, we have experienced intermittent
difficulties with the buffered stream I/O functions fread and fwrite that can only be attributed to race
conditions.  On the issue of errors, though we did not check the return values of the thread calls in our
examples to streamline them, the return values should be consistently checked.  Almost all pthread related
functions will return -1 on an error.  For example:

pthread_t some_thread;
if ( pthread_create( &some_thread, ... ) == -1 )
{

perror("Thread creation error");
exit(1);

}

The semaphore library will print a message and exit on erorrs.  Some useful functions not covered in the
examples:

pthread_yield(); Informs the scheduler that the thread is willing to yield its quantum, requires
no arguments.

pthread_t me;
me = pthread_self(); Allows a pthread to obtain its own identifier

pthread_t thread;
pthread_detach(thread); Informs the library that the threads exit status will not be needed by

subsequent pthread_join calls resulting in better threads performance.

For more information consult the library or the man pages, e.g.,  man -k pthread..
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Appendix A - Semaphore Library Code

/*
 * File:  semaphore.h
 *
 */
#include <stdio.h>
#include <pthread.h>

#ifndef SEMAPHORES
#define SEMAPHORES

typedef struct Semaphore
{
    int         v;
    pthread_mutex_t mutex;
    pthread_cond_t cond;
}
Semaphore;

int         semaphore_down (Semaphore * s);
int         semaphore_up (Semaphore * s);
void        semaphore_destroy (Semaphore * s);
void        semaphore_init (Semaphore * s);
int         semaphore_value (Semaphore * s);
int         tw_pthread_cond_signal (pthread_cond_t * c);
int         tw_pthread_cond_wait (pthread_cond_t * c, pthread_mutex_t * m);
int         tw_pthread_mutex_unlock (pthread_mutex_t * m);
int         tw_pthread_mutex_lock (pthread_mutex_t * m);
void        do_error (char *msg);

#endif

-------------------------------------------------------------------------------------------

/*
 * File:  semaphore.c
 *
 */
#include "semaphore.h"

/*
 * function must be called prior to semaphore use -- handles
 * setup and initialization.  semaphore destroy (below) should
 * be called when the semaphore is no longer needed.
 *
 */
void
semaphore_init (Semaphore * s)
{
    s->v = 1;
    if (pthread_mutex_init (&(s->mutex), pthread_mutexattr_default) == -1)
     do_error ("Error setting up semaphore mutex");

    if (pthread_cond_init (&(s->cond), pthread_condattr_default) == -1)
     do_error ("Error setting up semaphore condition signal");
}

/*
 * function should be called when there is no longer a need for
 * the semaphore.  handles deallocation/release.
 *
 */
void
semaphore_destroy (Semaphore * s)
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{
    if (pthread_mutex_destroy (&(s->mutex)) == -1)
     do_error ("Error destroying semaphore mutex");

    if (pthread_cond_destroy (&(s->cond)) == -1)
     do_error ("Error destroying semaphore condition signal");
}

/*
 * function increments the semaphore and signals any threads that
 * are blocked waiting a change in the semaphore.
 *
 */
int
semaphore_up (Semaphore * s)
{
    int         value_after_op;

    tw_pthread_mutex_lock (&(s->mutex));

    (s->v)++;
    value_after_op = s->v;

    tw_pthread_mutex_unlock (&(s->mutex));
    tw_pthread_cond_signal (&(s->cond));

    return (value_after_op);
}

/*
 * function decrements the semaphore and blocks if the semaphore is
 * <= 0 until another thread signals a change.
 *
 */
int
semaphore_down (Semaphore * s)
{
    int         value_after_op;

    tw_pthread_mutex_lock (&(s->mutex));
    while (s->v <= 0)
    {
     tw_pthread_cond_wait (&(s->cond), &(s->mutex));
    }

    (s->v)--;
    value_after_op = s->v;

    tw_pthread_mutex_unlock (&(s->mutex));

    return (value_after_op);
}

/*
 * function does NOT block but simply decrements the semaphore.
 * should not be used instead of down -- only for programs where
 * multiple threads must up on a semaphore before another thread
 * can go down, i.e., allows programmer to set the semaphore to
 * a negative value prior to using it for synchronization.
 *
 */
int
semaphore_decrement (Semaphore * s)
{
    int         value_after_op;

    tw_pthread_mutex_lock (&(s->mutex));
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    s->v--;
    value_after_op = s->v;
    tw_pthread_mutex_unlock (&(s->mutex));

    return (value_after_op);
}

/*
 * function returns the value of the semaphore at the time the
 * critical section is accessed.  obviously the value is not guarenteed
 * after the function unlocks the critical section.  provided only
 * for casual debugging, a better approach is for the programmar to
 * protect one semaphore with another and then check its value.
 * an alternative is to simply record the value returned by semaphore_up
 * or semaphore_down.
 *
 */
int
semaphore_value (Semaphore * s)
{
    /* not for sync */
    int         value_after_op;

    tw_pthread_mutex_lock (&(s->mutex));
    value_after_op = s->v;
    tw_pthread_mutex_unlock (&(s->mutex));

    return (value_after_op);
}

/* -------------------------------------------------------------------- */
/* The following functions replace standard library functions in that   */
/* they exit on any error returned from the system calls.  Saves us     */
/* from having to check each and every call above.                      */
/* -------------------------------------------------------------------- */

int
tw_pthread_mutex_unlock (pthread_mutex_t * m)
{
    int         return_value;

    if ((return_value = pthread_mutex_unlock (m)) == -1)
     do_error ("pthread_mutex_unlock");

    return (return_value);
}

int
tw_pthread_mutex_lock (pthread_mutex_t * m)
{
    int         return_value;

    if ((return_value = pthread_mutex_lock (m)) == -1)
     do_error ("pthread_mutex_lock");

    return (return_value);
}

int
tw_pthread_cond_wait (pthread_cond_t * c, pthread_mutex_t * m)
{
    int         return_value;

    if ((return_value = pthread_cond_wait (c, m)) == -1)
     do_error ("pthread_cond_wait");
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    return (return_value);
}

int
tw_pthread_cond_signal (pthread_cond_t * c)
{
    int         return_value;

    if ((return_value = pthread_cond_signal (c)) == -1)
     do_error ("pthread_cond_signal");

    return (return_value);
}

/*
 * function just prints an error message and exits 
 *
 */
void
do_error (char *msg)
{
    perror (msg);
    exit (1);
}
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